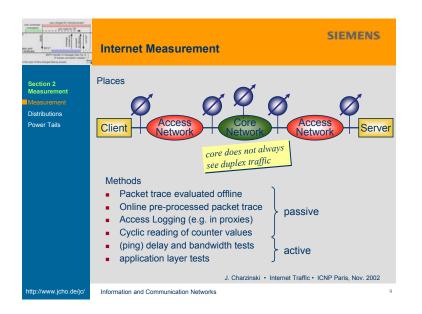
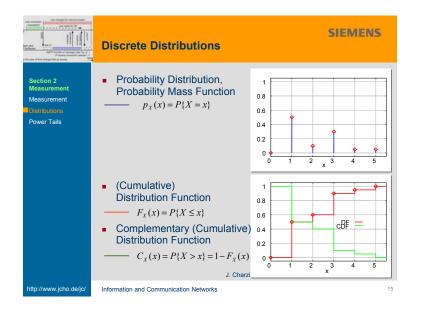
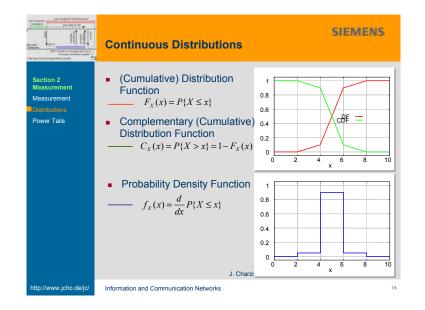

	user composes message(s) <mark>http://www.jcho.de/jc/Pubs/</mark>		Outline	MENS
			1. Introduction	
	Paris, France, Nov. 12, 2002		2. Measurement and Distributions	
	B 또 한 한 한 한 한 한 한 한 한 한 한 한 한 한 한 한 한 한		 User and Application Behavior Application Behavior Characteristics 	
			5. Self-Similarity	
Information and Communication Networks	* in the case of time-charged dial-up access		 User Behavior Characteristics Backbone Measurements 	
INELWOIKS			8. Performance	
	Internet Traffic		9. Models	
	Characteristics, Performance and Models		10. Implications for Simulation	
	Joachim Charzinski j.charzinski@ieee.org • http://www.jcho.de/jc/		J. Charzinski • Internet Traffic • ICNP Paris	s, Nov. 2002
http://www.jcho.de/jc/		http://www.jcho.de/jc/	Information and Communication Networks	2

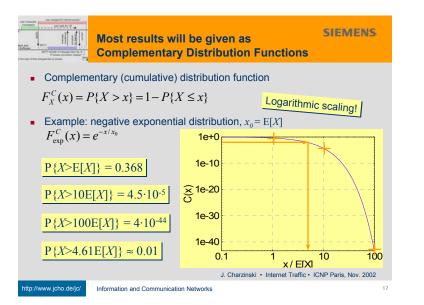

	SIEMENS SIEMENS	
Section 1 Introduction Why Bather? Dimensioning Internet	 Support for QoS will require some knowledge about traffic non-bottleneck links traffic not to be influenced by the link being dimensioned use traffic patterns occuring on the link if capacity → ∞ dimension to the rate needed to have given small impact on traffic bottleneck dimensioning consider TCP behavior dimension to offer a certain rate to every active connection or subscriber blocking considerations if access control is performed, the blocking probability is also an important parameter 	
	 Evaluation of user perceived quality of service SLA validation and advertising J. Charzinski • Internet Traffic • ICNP Paris, Nov. 2002 	
http://www.jcho.de/jc/	Information and Communication Networks	з

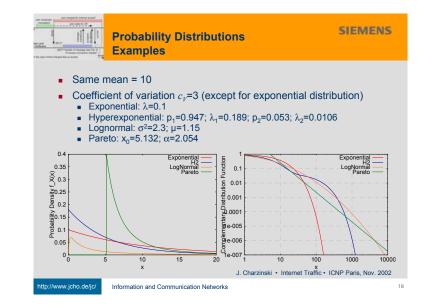
	Dimensioning	
Section 1 Introduction Why Bother? Dimensioning Internet	 Dimensioning targets optimum tuning of link capacities in a network exploitation of economy of scale Service Level Agreements Problem: growth exponential growth (factor 1.5 to 10 p.a.) all network nodes exchanged every 1 to 3 years Problem: traffic forecast new applications introduced "over night" very dynamic private market (entertainment!) Problem: heterogeneous network new network properties cannot be introduced by central "prescription" Who guarantees assured QoS? Who pays for QoS assurance? 	
http://www.jcho.de/jc/	J. Charzinski • Internet Traffic • ICNP Paris, Nov. 2002 Information and Communication Networks	4

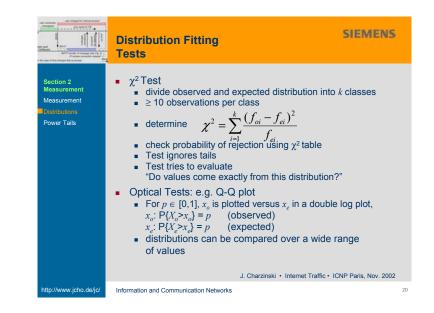


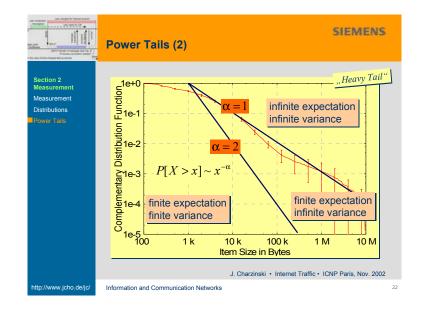

	Internet Measurement SIEMENS Data Collection	
Section 2 Measurement Measurement Distributions Power Tails	 Packet trace Flow trace: one record per TCP connection other flow levels Pre-processed data average values Wavelet coefficient sets 	
	Access Log one or two record(s) per dial-in session 	
	Active Measurements Measure delay, loss, bandwidth, application performance between two points J. Charzinski • Internet Traffic • ICNP Paris, Nov. 2002 	
http://www.jcho.de/jc/	Information and Communication Networks	10


	Internet Measurement SIEMENS Some Tools	
Soction 2 Measurement Distributions Power Tails	 Packet Trace Tools tcpdump (Paxson) Ethereal, argus, etc Flow detecting / higher layer tracing tools OC3mon (Apisdorf/Claffy/Thompson) + CoralReef NeTraMet (Brownlee) BLT (Feldmann) tcpanaly (Paxson) Active test tools visit NIMI at http://www.ncne.nlanr.net/nimi/ Network management tools use SNMP to retrieve counter values from network elements RMON probes specialized measurement boxes 	
	J. Charzinski • Internet Traffic • ICNP Paris, Nov. 2002	
http://www.jcho.de/jc/	Information and Communication Networks	11

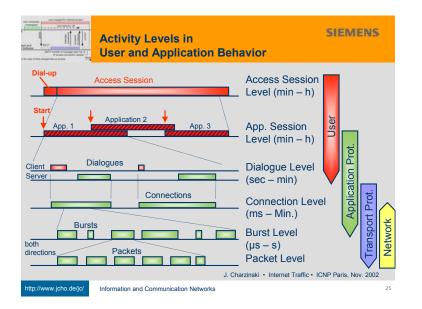

	Trac	ces used here			SIEN	IEN
Section 2 Measurement Measurement Distributions Power Tails		acket traces (acquir Trace A: ADSL Uni Trace B: Modem/IS Trace C: Auckland I	Münster, M DN Fünfsee	ay-Dec. 1 enland, Ma	r. 1999	
			Trace A	Trace B	Trace C	
		Packets	60 M	43 M	219 M	
		SMTP connections	2.1 k	3.4 k	335 k	
		SMTP mails	2.1 k	4.3 k	324 k	
		POP3 connections	34 k	31 k	88 k	
		POP3 mails	5 k	12.8 k	5.2 k	
		IMAP connections	-	_	6.3 k	
		IMAP mails	-	_	7.5 k	
		IMAP mails		i • Internet Tra	7.5 k	

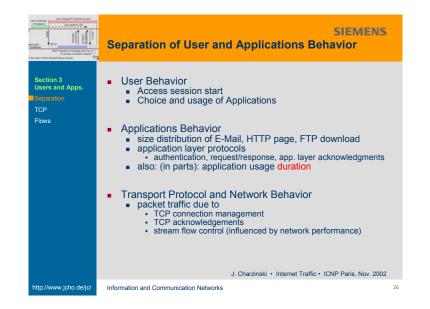

	Trace Evaluation		SIEM	ENS
Section 2 Measurement Measurement	timestamp, IP and TCP headeno application level data	ers only		
Distributions Power Talls	pkt source timestamp size prof IP addr. 17:05:20.848707 80 udp 154.232.114.71 17:05:20.852981 290 udp 128.176.0.12 17:05:20.876821 60 tcp 154.232.114.71 17:05:20.880071 60 tcp 154.232.114.71 17:05:20.880071 60 tcp 154.776.188.76 17:05:21.063355 60 tcp 154.776.188.76 17:05:21.085330 60 tcp 154.7276.188.76 17:05:21.090537 140 tcp 154.232.114.71 17:05:21.108640 76 tcp 154.232.114.71 17:05:21.108453 94 tcp 154.232.114.71 17:05:21.108454 76 tcp 154.232.114.71 17:05:21.108459 94 tcp 154.232.114.71 17:05:21.223875 90 tcp 154.232.114.71 17:05:21.22342421 90 tcp 128.176.188.76 17:05:22.342421 91 tcp 128.176.188.76	destination IP addr. 128.176.0.12 154.232.114.71 128.176.188.76 154.232.114.71 128.176.188.76 154.232.114.71 128.176.188.76 154.232.114.71 128.176.188.76 154.232.114.71 128.176.188.76	$\begin{array}{ccccc} 53 & 10 \\ 1034 \\ 25 & 10 \\ 1034 \\ 1530 & 1 \\ 113 & 15 \\ 25 & 10 \\ 1034 \\ 25 & 10 \\ 1034 \\ 25 & 10 \end{array}$	t flags 53
	 trace replayed into pseudo pro latency distributions etc measu J. Charzin 			ov. 2002
http://www.jcho.de/jc/	Information and Communication Networks			13

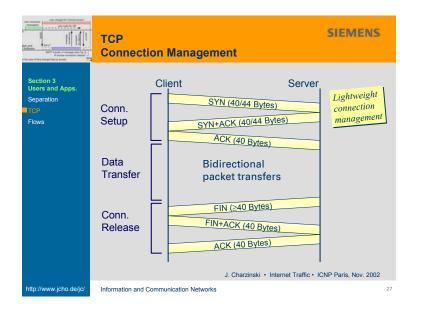


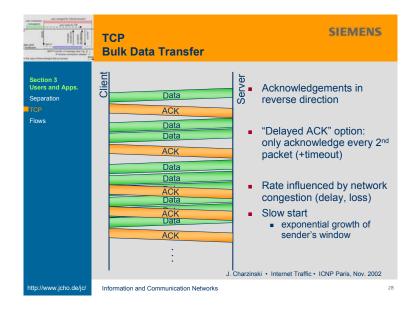


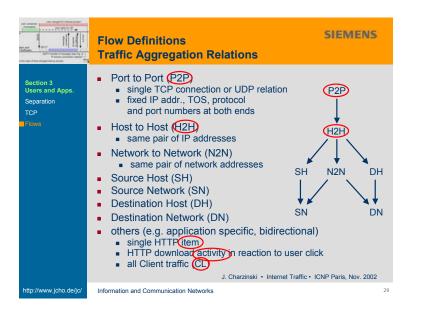
	Distribution Fitting SIEMENS Methods	
Section 2 Measurement Ostrituvions Power Tails	 1st step: select appropriate distribution either optically or from hypotheses / knowledge about underlying processes Moment Fitting Estimate mean and variance set distribution parameters Optical / Distribution Fitting minimize difference (e.g. MSE) between measured and analytical distribution Maximum Likelihood Method maximize Likelihood for getting the observed samples X₁X_n L(λ₁, λ₂,λ_k) = 	
	J. Charzinski • Internet Traffic • ICNP Paris, Nov. 2002	
http://www.jcho.de/jc/	Information and Communication Networks	19

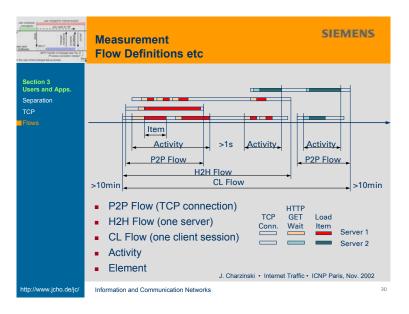


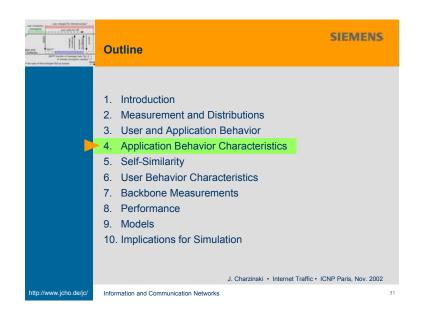

	Power Tails			SIEMENS
Section 2 Measurement Measurement Distributions Power Tails	decays like $C(x) \sim$	nentary distrib $x^{-\alpha} \cdot L(x)$ varying L(x) as Distribution Invalid Valid Valid Valid		C(x)=P{X>x} Variance - ∞ ∞ Finite
		ed from "usual	" distributions	n higher probability affic • ICNP Paris, Nov. 2002
http://www.jcho.de/jc/	Information and Communic	ation Networks		21

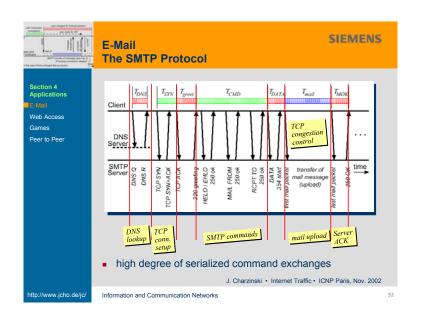


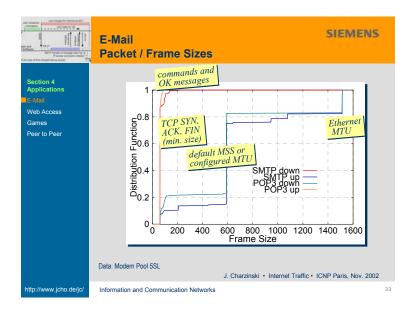

	Power Tails Example			SIEMENS		and another another and another anothe
Section 2 Measurement Distributions Power 7 atts	 Negative exponence C_X(x) = P{X > x} = Pareto distribution C_X(x) = P{X > x} = Common mean x 					
	Distribution Type Parameters P{X>10} P{X>100} P{X>100}	λ=0.1 0.37 5e-5 4e-44	Pareto $\alpha=4; x_0=7.5$ 0.32 3e-5 3e-9 nski • Internet Traffic	Pareto $\alpha = 1.5, x_0 = 3.3$ 0.07 6e-3 2e-4		
http://www.jcho.de/jc/	Information and Communication N	letworks			23	http

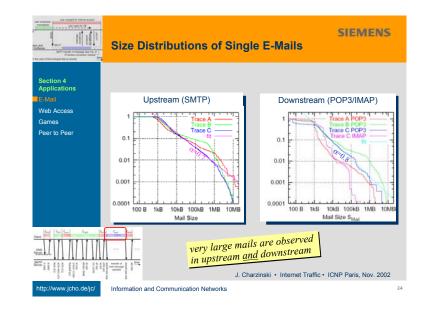

der Angel V mend and der Angel V mend angel der Angel V mend angel der Angel V mend an	Outline	
•	 Introduction Measurement and Distributions User and Application Behavior Application Behavior Characteristics Self-Similarity User Behavior Characteristics Backbone Measurements Performance Models Implications for Simulation 	
http://www.jcho.de/jc/	Information and Communication Networks	24

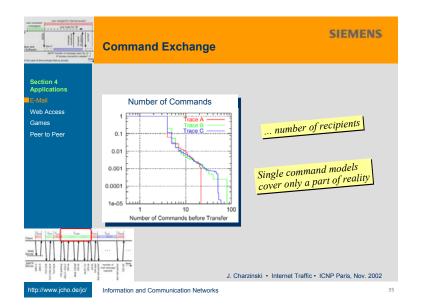


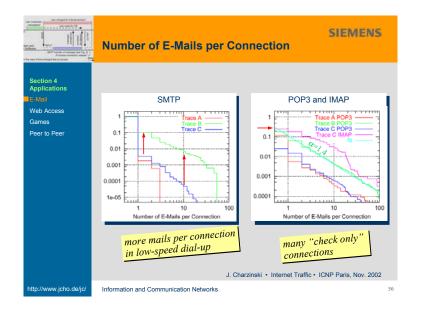


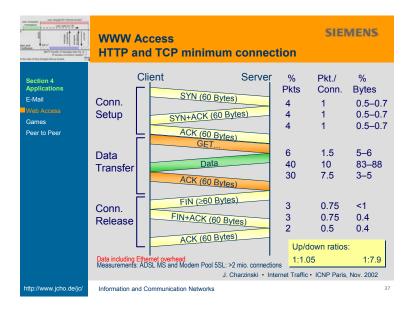


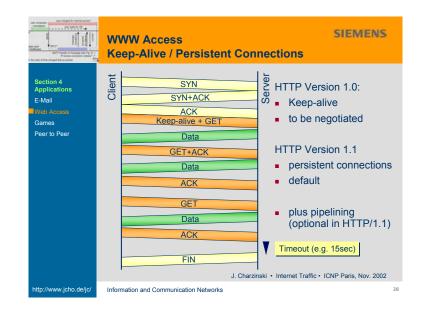


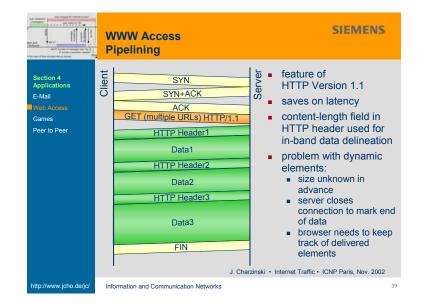


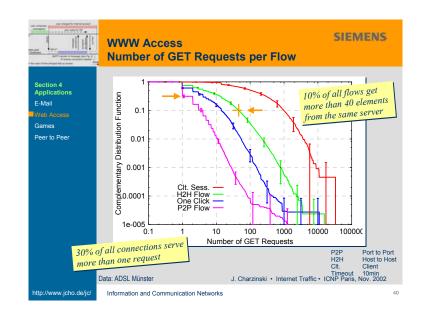


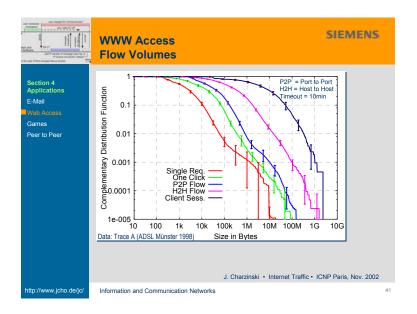


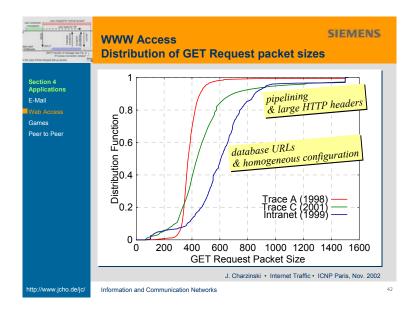


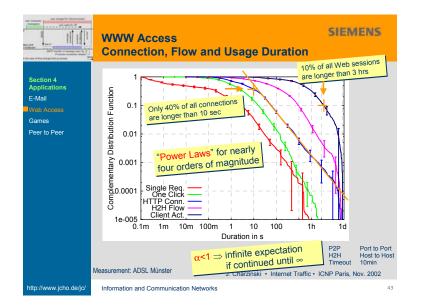


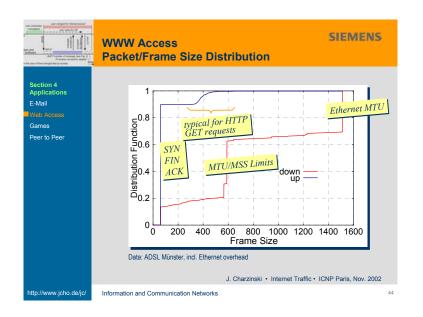


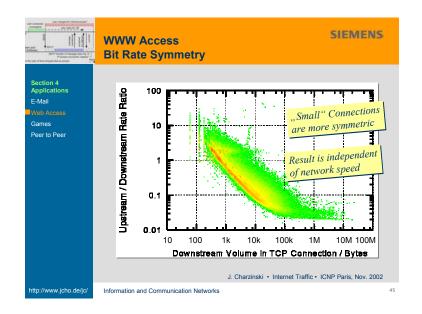


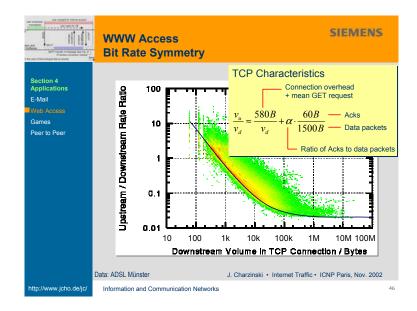


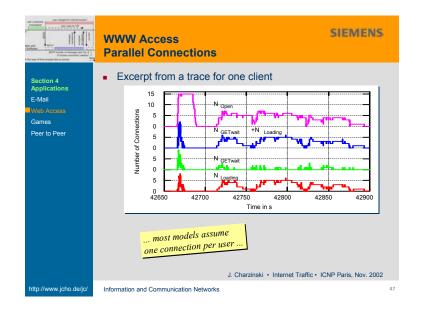


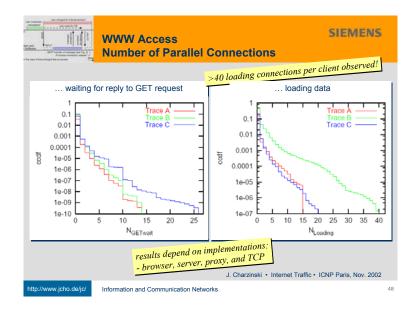


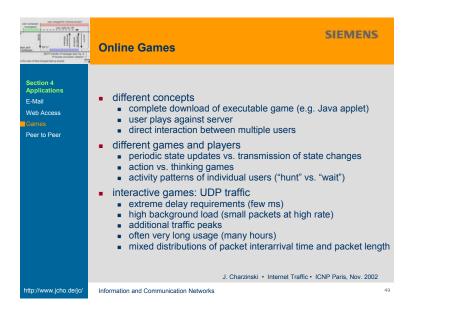


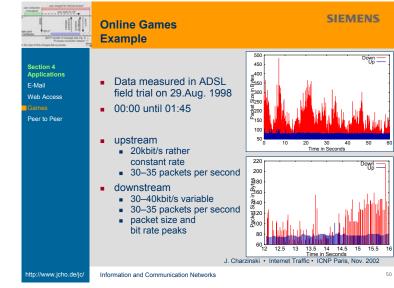


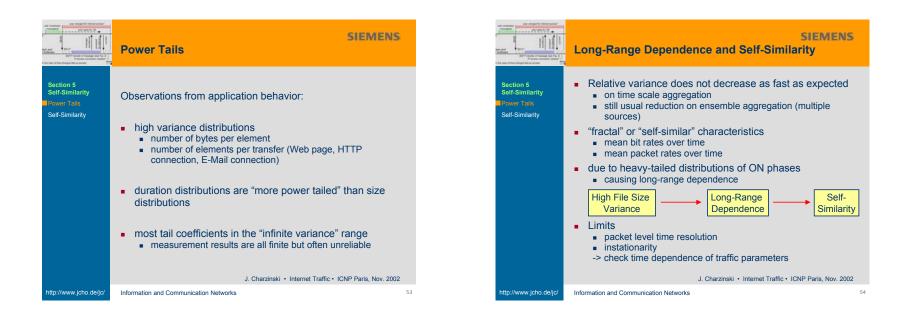


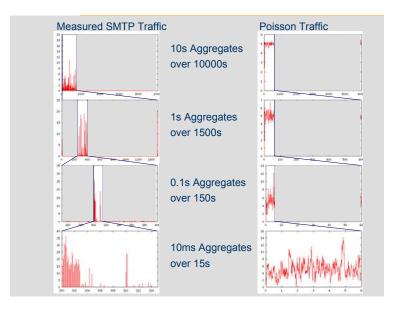


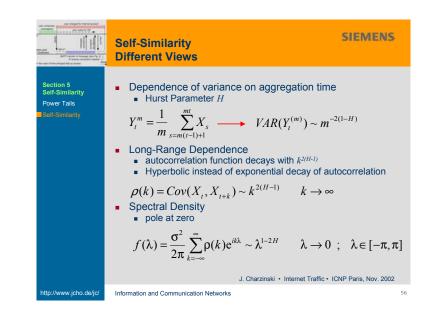




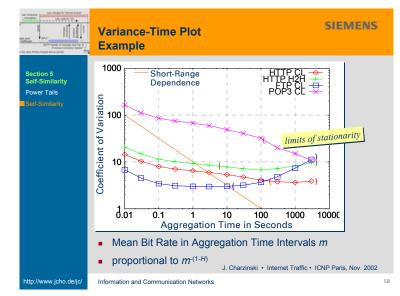


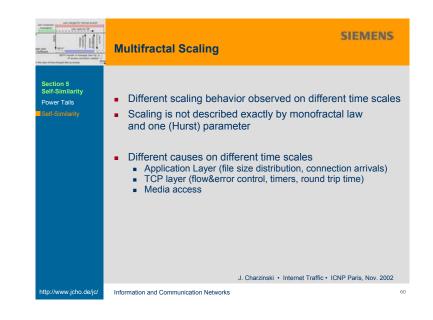


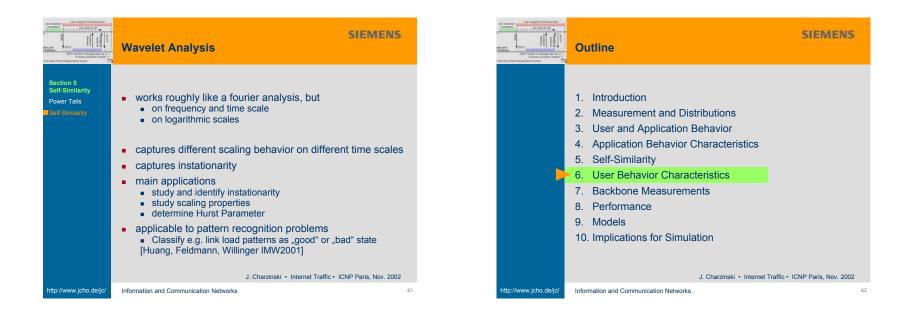

	SIEMENS Peer to Peer Applications		Outline
Section 4 Applications E-Mail Web Access Games Peer to Peer	 examples: napster, gnutella distributed architecture for exchanging (large) files discovy queries and content exchanged between different hots discovy and stand architecture for exchanged between different hots discovy and stand stand exchanged between different hots discovy and stand stand exchanged between different hots discovy and an exchanged between different hots discovy and stand exchanged between hots 		 Introduction Measurement and Distributions User and Application Behavior Application Behavior Characteristics Self-Similarity User Behavior Characteristics Backbone Measurements Performance Models Implications for Simulation
http://www.jcho.de/jc/	Information and Communication Networks 51	http://www.jcho.de/jc/	Information and Communication Networks

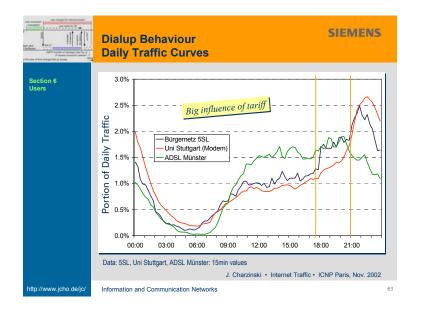

SIEMENS

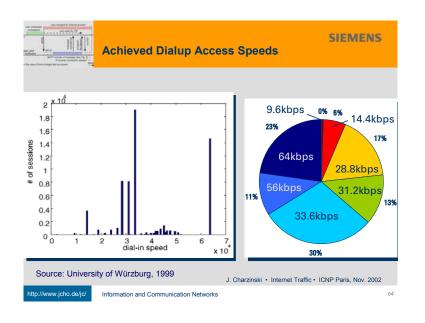
52

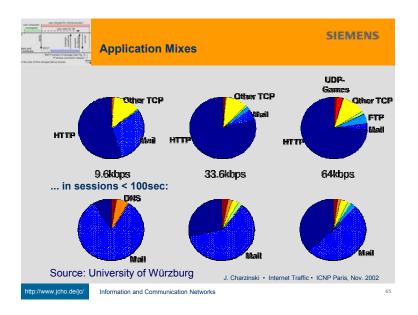

J. Charzinski • Internet Traffic • ICNP Paris, Nov. 2002

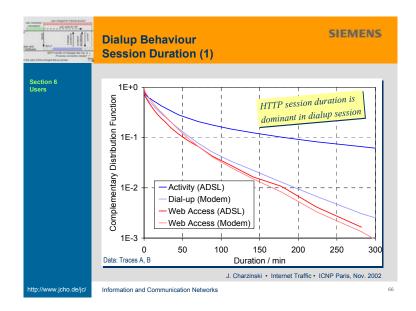


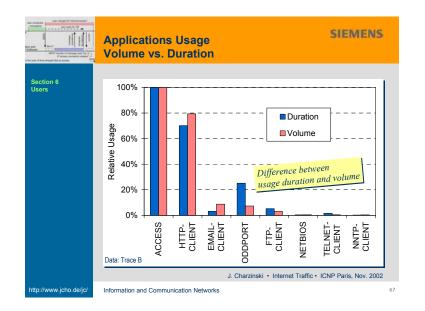


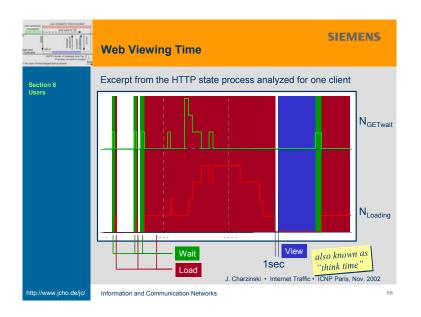

Section 5 Get/Similarity Power Tails Variance - Time Analysis plot variance of aggregate versus aggregation time simple, easy to understand also gives second (variance) parameter slightly unreliable BX/Similarity Also gives second (variance) parameter slightly unreliable R/S Analysis classical approach for unknown mean and variance plot rescaled adjusted range versus interval length Periodogram Analysis shows increase of spectral density at zero Abry-Veitch Estimator using wavelet theory independent of stationarity determines H and variance parameter from regression of Wavelet coefficients 		Self-Similarity SIEM Estimating the Hurst Parameter	ENS
	Self-Similarity Power Tails	 plot variance of aggregate versus aggregation time simple, easy to understand also gives second (variance) parameter slightly unreliable R/S Analysis classical approach for unknown mean and variance plot rescaled adjusted range versus interval length Periodogram Analysis shows increase of spectral density at zero Abry-Veitch Estimator using wavelet theory independent of stationarity determines H and variance parameter from regression of Wavelet coefficients 	
	http://www.jcho.de/jc/		

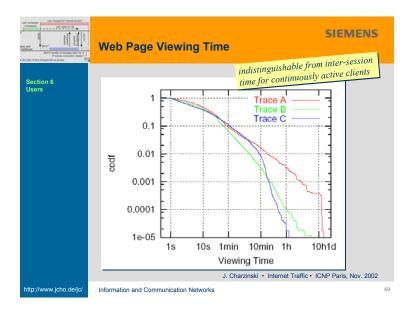


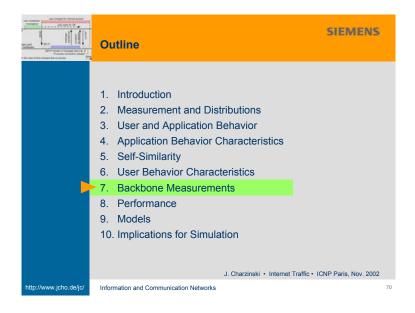

	SIEMENS Influences on Self-Similarity	
Section 5 Self-Similarity Power Tails Self-Similarity	 File size distribution main cause Heavy tail creates self-similarity Idle time distribution also relevant, further increases H in certain cases Mixing traffic flows with different H resulting H is somewhat interpolated Network Topology no significant influence Protocol Stack TCP (congestion and error control) modulates H Network performance decreases smoothly with increasing I queue lengths are more sensitive 	Н
	J. Charzinski • Internet Traffic • ICNP Paris, Nov. 2002	
http://www.jcho.de/jc/	Information and Communication Networks	59

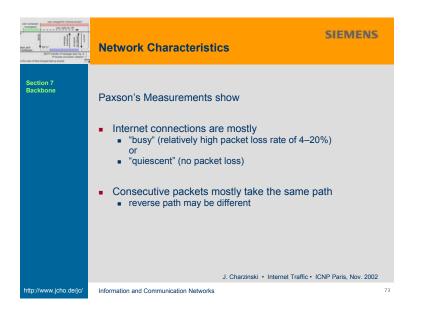


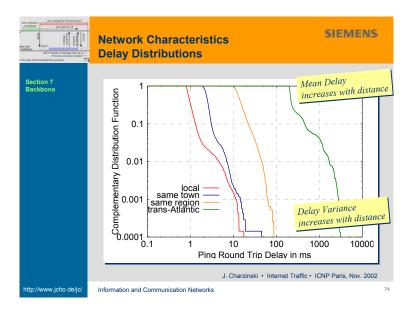


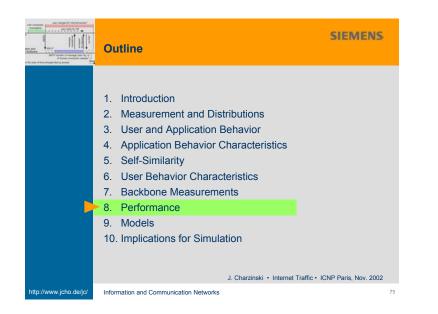


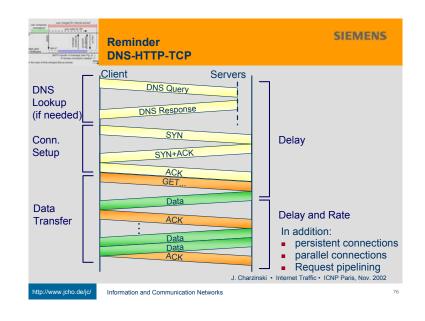




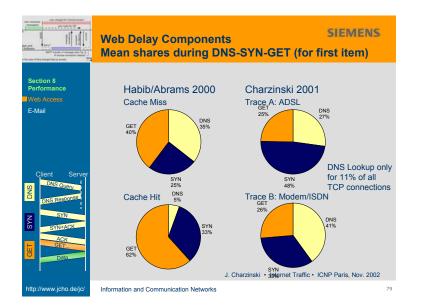


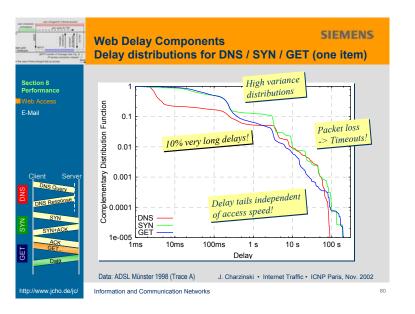


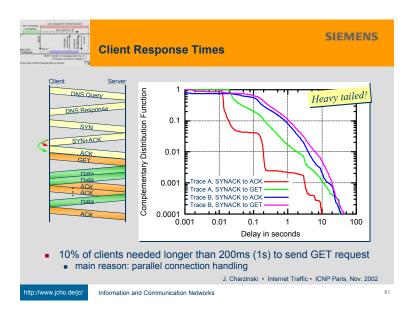


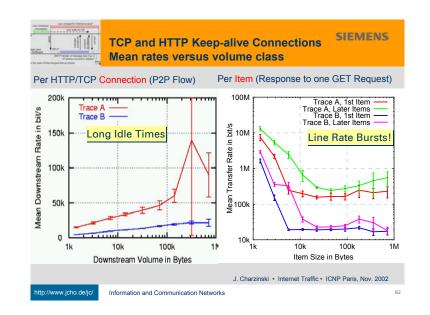

	SIEMENS Traffic Mixes	
Section 7 Backbone	In addition to local traffic: Domain Name System (DNS) Network News (nntp) Routing Protocols Network Management CAIDA (www.caida.org) March 2000 (5 min @22:07) 30% HTTP 25% FTP data 13% other TCP 6% Napster 6% Squid Web Cache 5% SMTP 5% Liquid Audio and many more	
	J. Charzinski • Internet Traffic • ICNP Paris, Nov. 2002	
http://www.jcho.de/jc/	Information and Communication Networks	71

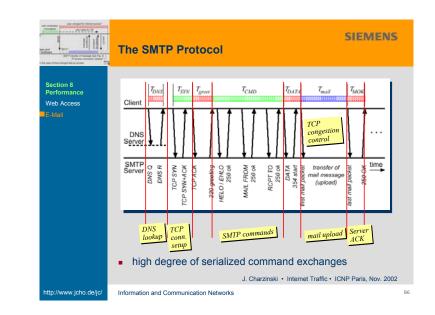
	SIEMENS Periodic Changes and Symmetry	
Section 7 Backbone	 Daily patterns less activity during early morning (2:00–7:00) prime time during the day (10:00–18:00) or evening (depends on ISP) 	
	 Weekly patterns less activity on Saturday / Sunday 	
	 Asymmetry on international links varies during the day determined by client/server relations mostly export of documents from U.S. 	
	J. Charzinski • Internet Traffic • ICNP Paris, Nov. 2002	
http://www.jcho.de/jc/	Information and Communication Networks	7.

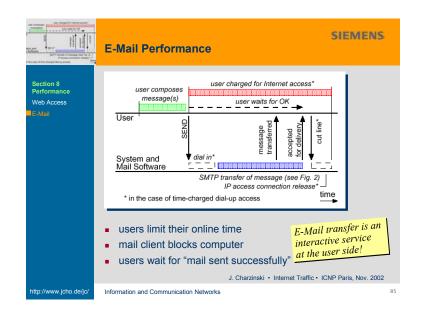


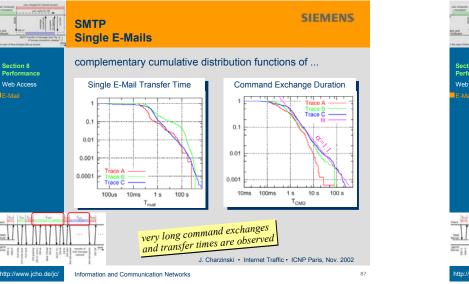


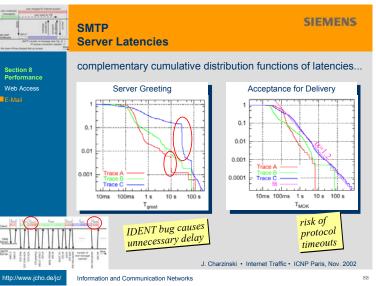


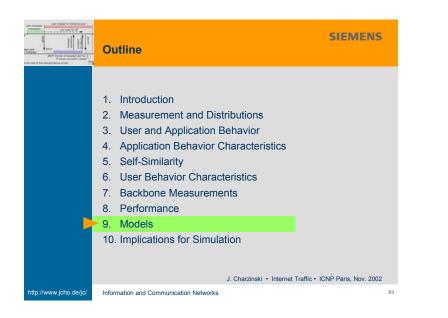


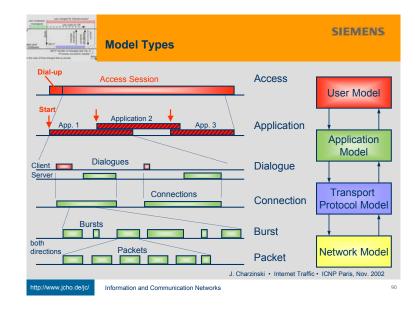


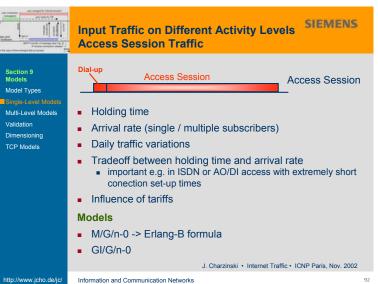


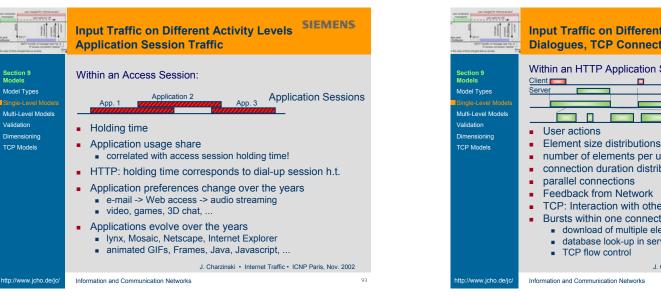


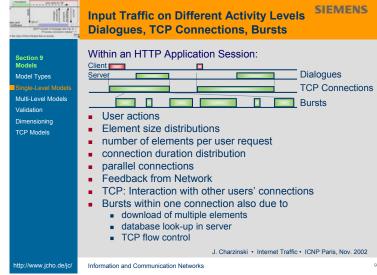

	Web Performance SIEMENS General Observations	
Section 8 Performance Web Access E-Mail	 DNS lookups can take significant time Connection establishment routes and servers show "cold" and "warm" states small files: most delay between GET request and start of transfer server load is critical large files: most delay during transmission network load is critical (timeouts, fast retransmits) All delays show heavy-tailed distributions (!) High throughput needs good OS scheduling and I/O performance on both sides 	
http://www.jcho.de/jc/	Information and Communication Networks	83

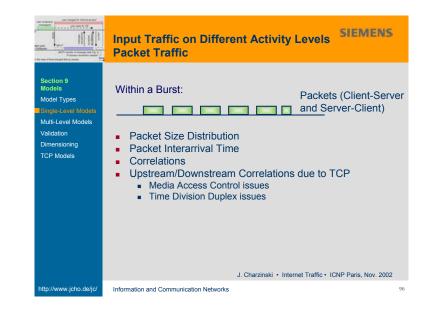

	SIEMENS Protocol and Architecture Options	
Section 8 Performance Weft Access E-Mail	 Caching validation time can be significant [Krishnamurthy/Wills] does not help with dynamic content Persistent connections (HTTP/1.0 or HTTP/1.1) can reduce network load bad if server memory is a bottleneck [Barford/Crovella] Request pipelining reduces influence of round-trip times to GET more items problem with servers closing connections (unclear client/server interaction) [Krishnamurthy/Wills] Browser/Proxy options [Cohen/Kaplan] pre-resolving pre-connecting pre-warming (durmy HTTP HEAD) 	
	J. Charzinski • Internet Traffic • ICNP Paris, Nov. 2002	
http://www.jcho.de/jc/	Information and Communication Networks	84

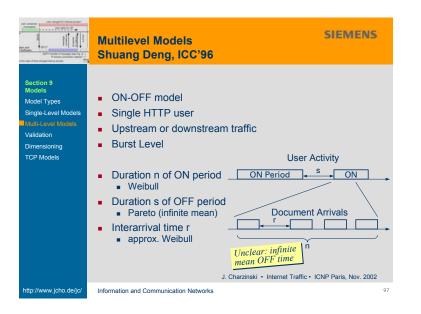


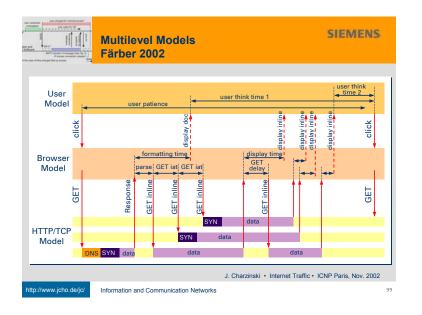




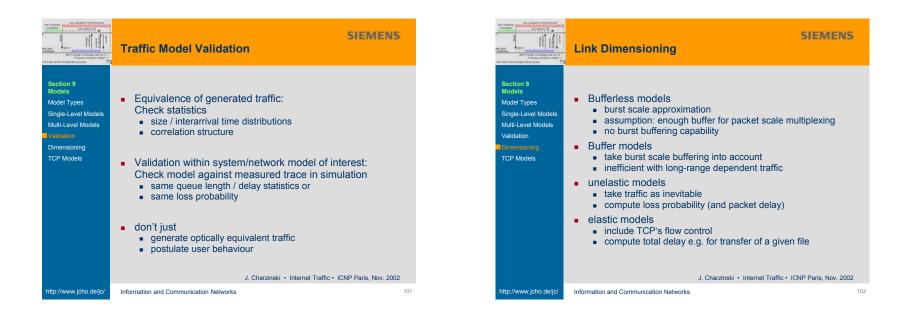


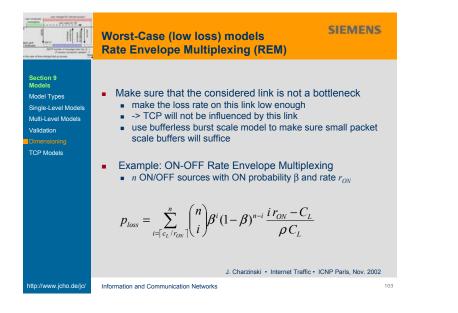

	Model Types (2)	IS	1	
Section 9 Models Model Types Single-Level Models Multi-Level Models Validation Dimensioning TCP Models	 Different models for different levels Layer 3 traffic models to drive lower layer simulations user/application models to drive TCP simulations session level models to drive loss simulations User and application models 			Si M Si M Va Di T(
	 Single user / backbone traffic models Network models e.g. for TCP behaviour 			
http://www.jcho.de/jc/	Multilevel models e.g. for HTTP users or HTTP traffic J. Charzinski • Internet Traffic • ICNP Paris, Nov. 20 Information and Communication Networks	002 91		ntt;

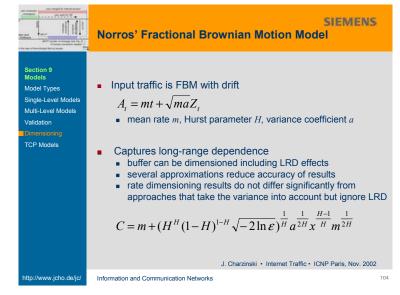


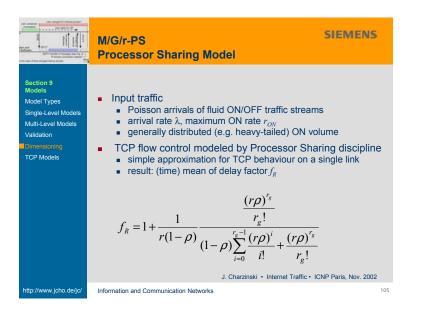


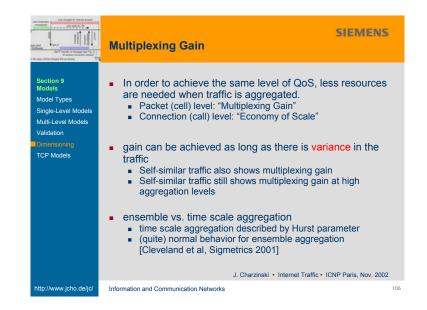
	Input Traffic on Different Activity Levels Dialogues, TCP Connections, Bursts (2)	
Section 9 Models Model Types Single-Level Models Multi-Level Models Validation Dimensioning TCP Models	 Connection interarrival times Weibull distribution timer driven TCP's flow control adapts to available bit rate Limit measured from packet loss (or excessive RTD) When is a link "correctly dimensioned"? Packet traffic traces cannot be re-used in another scenario Packet loss is an unsuitable QoS criterion	
	 Models M/G/R-PS, ON/OFF Fluid Flow Markov models for TCP behaviour FBM Fluid Flow J. Charzinski • Internet Traffic • ICNP Paris, Nov. 2002 	
http://www.jcho.de/jc/	Information and Communication Networks	95

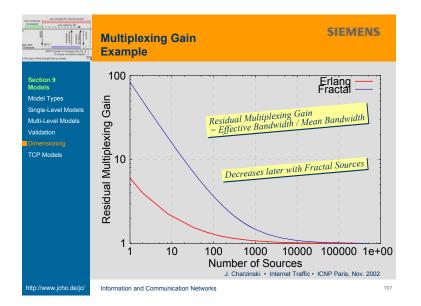


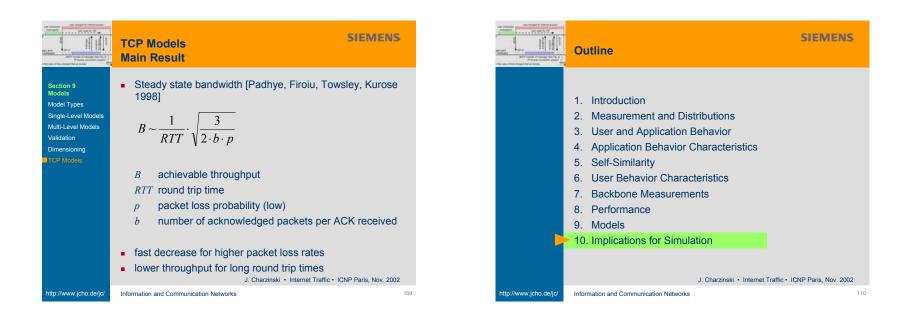


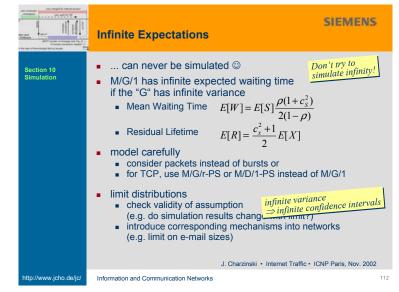

	Multilevel Models Bruce Mah, Infocom'97	SIEMENS
Section 9 Models Model Types Single-Level Models Hull-Level Models Validation Dimensioning TCP Models	 Session and Burst Level Single HTTP user Upstream and downstream traffic Request Length bimodal Reply Length Pareto, α≈1.04–1.14 Number of files per doc. Think Time Number of documents per server Server Selection Zipf's Law 	Server Visits new selection think Documents think Documents # docs from same server File 1 File 2 File 3 Request Length Reply Length Think Time includes idle time Think Time includes idle time there restions -> extremely long! between sessions -> extremely long!
http://www.jcho.de/jc/	Information and Communication Networks	98

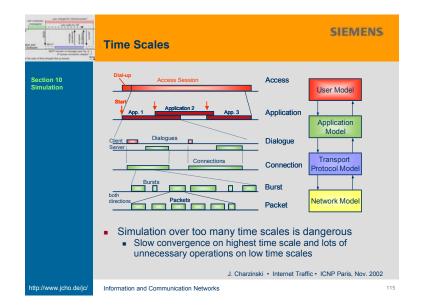



	Multilevel Models SIEMENS Parameters	
Section 9 Model Types Single-Level Models Multi-Level Models Validation Dimensioning TCP Models	 Many parameters but easy to understand How to determine parameters? Often difficult to extract even from packet trace measurements Parameters depend on other constraints network speed computer (client / server) speed delays tariffs 	5
	 Contrast: Multi-fractal models canonical set of parameters (per time scale octave) measurement based with little physical meaning J. Charzinski • Internet Traffic • ICNP Paris, Nov. 2002 	
http://www.jcho.de/jc/	Information and Communication Networks 1	00








	SIEMENS TCP Models	
Section 9 Models Model Types Single-Level Models Multi-Level Models Validation Dimensioning TCP Models	 Analytical models include relevant system states basic idea: get stochastic distribution of system state occupancy and derive other measures (e.g. throughput) from that Extensions into network models to be solved iteratively CWND congestion window sender can send CWND segments until acknowledgement is needed 	6
	 Threshold CWND value at which exponential increase ("slow start") is replaced by linear increase ("congestion avoidance") 	
	 Often additional assumptions greedy source fresh connection independent packet losses 	
	There are different TCP versions around! J. Charzinski • Internet Traffic • ICNP Paris, Nov. 2002	2
http://www.jcho.de/jc/	Information and Communication Networks	10

Stemens Section 10 Simulation Effects of long-range dependent traffic • steady state reached slowly • steady state reached slowly • observed system state (e.g. queue length) • High variability at steady state • high probability of "swamping" observation • Standard deviation of batch means decreases slowly • To reduce batch means standard deviation by a factor of 10: simulate factor of 10 ^{11(1-th)} longer • H=0.5: factor 100 longer • H=0.9: factor 10 000 000 000 longer! • H=0.9: factor 10 000 000 longer!
 steady state reached slowly stochastic generators (input processes!) observed system state (e.g. queue length) High variability at steady state high probability of "swamping" observation Standard deviation of batch means decreases slowly To reduce batch means standard deviation by a factor of 10: simulate factor of 10^{11(1-H)} longer H=0.5: factor 100 longer
 stochastic generators (input processes!) observed system state (e.g. queue length) High variability at steady state high probability of "swamping" observation Standard deviation of batch means decreases slowly To reduce batch means standard deviation by a factor of 10: simulate factor of 10^{1/(1+i)} longer H=0.5: factor 100 longer
 high probability of "swamping" observation Standard deviation of batch means decreases slowly To reduce batch means standard deviation by a factor of 10: simulate factor of 10^{1/(1-H)} longer H=0.5: factor 100 longer
 To reduce batch means standard deviation by a factor of 10: simulate factor of 10^{1/(1-H)} longer H=0.5: factor 100 longer
J. Charzinski • Internet Traffic • ICNP Paris, Nov. 2002
http://www.jcho.de/jc/ Information and Communication Networks 111

	SIEMENS Input Parameters		SIEM Deterministic Scenarios
Section 10 Simulation	 Don not use the Normal (Gaussian) distribution Finite probability for X<0 Use input parameters that have a meaning and make sure the corresponding random variables have finit mean TCP traces are generally invalid if simulation includes TCP model -> use file sizes if simulation does not include TCP -> only binary result possible YES: the simulated network does not disturb TCP NO: the simulated network disturbs TCP and results will be fundamentally different The "mean packet size" is generally uninteresting Packet sizes have multimodal distributions 	Section 10 Simulation	 Be careful not to simulate trivial scenarios ad infinitum Ensemble statistics vs. single source statistics Applications: Voice over IP on packet level other constant rate sources Solutions in simple models: identify period and change phase cyo use phase changing generators use frequency shifted generators
http://www.jcho.de/jc/	J. Charzinski • Internet Traffic • ICNP Paris, Nov. 2002 Information and Communication Networks	13 http://www.jcho.de/jc/	J. Charzinski • Internet Traffic • ICNP Paris, No Information and Communication Networks

References

General Literature

- D. Comer, "Internetworking with TCP/IP", 4th. Ed., Prentice Hall, Englewood Cliffs, NJ, USA, 2000
- S. Floyd, V. Paxson, "An Overview of Internet Engineering, Measurement, and Modeling", Tutorial International Teletraffic Congress ITC-15, Washington D.C., USA, June 1997
- J.W. Roberts, "Traffic Theory and the Internet." IEEE Communications Magazine 39'(1) 2001, pp. 94–99

Internet growth and traffic figures

- As statistics for Internet growth and Internet traffic have a very short life, we mostly give URLs here. URLs themselves often also have a relatively short life, but they still live somewhat longer than the data they point to.
- www.nw.com or http://www.isc.org/dsview.cgi?domainsurvey/index.html
- http://nis.nsf.net/statistics/nsfnet/
- http://www.ripe.net/statistics/index.html

http://www.dfn.de/win/allinfo/statistik/

- V. Paxson, "Growth Trends in Wide-Area TCP Connections", IEEE Network 8(4)1994, pp.8-17
- K.C. Claffy, H.-W. Braun, G.C. Polyzos, "Tracking Long-Term Growth of the NSFNET." Communications of the ACM 37(8) Aug. 1994, pp. 34-45

Routing

- C. Huitema, "Routing in the Internet", Prentice-Hall, 1995
- V. Paxson, "End-to-End Routing Behavior in the Internet." Proc. ACM SIGCOMM'96, Stanford, CA, USA, Aug. 1996, pp. 25–38. Available at ftp://ftp.ee.lbl.gov/papers/routing.SIGCOMM.ps.Z
- C. Labovitz, G.R. Malan, F. Jahanian, "Internet Routing Instability." Proc. ACM SIGCOMM'97, Cannes, France, Sep. 1997, pp. 115–126

Backbone Traffic

- J. Apisdorf, K. Claffy, K. Thompson, R. Wilder, "OC3MON: Flexible, Affordable, High-Performance Statistics Collection." Online Proceedings of Inet97, Kuala Lumpur, Malaysia, June 1997. Available at http://www.isoc.org/isoc/whatis/conferences/inet/97/proceedings/F1/F1_2.HTM
- C.J. Bovy, H.T. Mertodimedjo, G. Hooghiemstra, H. Uijterwaal, P. van Mieghem, "Analysis of End-toend Delay Measurements in Internet", Proc. PAM 2002
- R.L. Carter, M.E. Crovella, "Measuring Bottleneck Link Speed in Packet-Switched Networks." Boston University, CS Dept, Boston, MA 02215 Technical Report BU-CS-96-006, Mar. 1996. Available at ftp://cs-ftp.bu.edu/techreports/96-006-measuring-bottleneck-link.ps.Z
- K.C. Claffy, H.-W. Braun, G.C. Polyzos, "A Parametrizable Methodology for Internet Traffic Flow Profiling." IEEE JSAC 13(8) Oct 1995, pp. 1481-1494
- K. Claffy, G. Miller, K. Thompson, "The nature of the beast: recent traffic measurements from an Internet backbone." Proceedings of the INET'98 Conference, April 1998. Available at http://www.caida.org/Papers/Inet98/index.html
- J.A. Copeland, R. Abler, K.L. Bernhardt, "IP Flow Identification for IP Traffic Carried over Switched Networks." Computer Networks and ISDN Systems 31(5), 1999, pp. 493-504
- J. Cao, W.S. Cleveland, D. Lin, D.X. Sun, "On the Nonstationarity of Internet Traffic." Proc. ACM Signetrics / Performance 2001, Cambridge, MA, USA, June 2001, pp. 102–112
- Feldmann A, Rexford J, Cáceres R. 1998. Efficient Policies for Carrying Web Traffic Over Flow-Switched Networks. IEEE/ACM Trans. Netw. 6, 673-685

- S. Lin, N. McKeown, "A Simulation Study of IP Switching." Comp. Comm. Rev. 27(4) 1997, pp. 15-24
- S. McCreary, kc claffy, "Trends in Wide Area IP Traffic Patterns: A View from Ames Internet eXchange." Proc. ITC Specialist Seminar on IP Traffic, Monterey, CA, USA, Sep. 2000
- K. Mochalski, J. Micheel, S. Donnelly, "Packet Delay and Loss at the Auckland Internet Access Path", Proc. PAM 2002
- K. Nagami, H. Esaki, Y. Katsube, O. Nakamura. Flow Aggregated, Traffic Driven Label Mapping in Label-Switching Networks. IEEE J. Select. Areas Comm. 17, 1999, pp. 1170-1177
- V. Paxson, "End-to-End Internet Packet Dynamics." ACM Computer Communication Review 27(4) Oct. 1997, pp. 139-152. Available at <u>ftp://ftp.ee.lbl.gov/papers/vp-pkt-dyn-sigcomm97.ps.Z</u>
- B. Ryu, D. Cheney, H.-W. Braun, "Internet Flow Characterization: Adaptive Timeout Strategy and Statistical Modeling", Proc. PAM 2001
- K. Thompson, G.J. Miller, R. Wilder, "Wide-Area Internet Traffic Patterns and Characteristics." IEEE Network 11(6) Nov./Dec. 1997, pp. 10-23. Available at http://www.vbns.net/presentations/papers/MCltraffic.ps
- Y. Zhang, N. Duffield, V. Paxson, S. Shenker, "On the Constancy of Internet Path Properties", Proc. ACM Internet Measurement Workshop 2001

Application and user traffic and models (mostly HTTP)

- M.F. Arlitt, C. L. Williamson, "A Synthetic Workload Model for Internet Mosaic Traffic." Proc. SCSC'95, Ottawa, Canada, July 1995, pp. 852-857
- M.F. Arlitt, C.L. Williamson, "Web Server Workload Characterization: The Search for Invariants." ACM Performance Evaluation Review 24 (1) May 1996, pp. 126-137. Available at ftp://ftp.cs.usask.ca/pub/discus/paper.96-3.ps.Z
- D. Bauer, J. Charzinski, V. Held, "Virtuelle Universität durch ADSL-Technologie: Studenten im Geschwindigkeitsrausch durch breitbandigen Internet-Zugang." ITG-Fachtagung "Internet-Frischer Wind in der Telekommunikation", Stuttgart, Okt. 1999 (in German)
- M.S. Borella, "Source Models of Network Game Traffic", Proc. Networld+Interop'99, Las Vegas, USA, May 1999. Available at http://www.xnet.com/~cathmike/MSB/Pubs/game-traffic.ps.Z
- L.D. Catledge, J.E. Pitkow, "Characterizing browsing strategies in the World-Wide Web." Computer Networks and ISDN Systems 27(6) April 1995, pp. 1067-1073
- J. Charzinski, "Internet Client Traffic Measurement and Characterisation Results", Proc. ISSLS, Stockholm, Sweden, June 2000.
- J. Charzinski, J. Färber, M. Frank, J. Tölle, "The AMUSE Residential Multimedia Trials: Phase 1 Monitoring Results Summary." Proc. NOC'98, Manchester, UK, June 1998, pp. 86-93
- H.-K. Choi, " A Behavior Model of a Web Traffic", 7th International Conference on Network Protocols 99' (ICNP 99'), Toronto, Canada, Nov. 1999
- A.E. Conway, S.B. Moon, P. Skelly, "Synchronized Two-Way Voice Simulation Tool for Internet Phone Performance Analysis and Evaluation." Proc. 9th Conf. Computer Performance Evaluation, Modelling, Techniques and Tools, St. Malo, France, June 1997. Available at ftp://gaia.cs.umass.edu/pub/Moon96:Synch.ps.gz
- C.R. Cunha, A. Bestavros, M.E. Crovella, "Characteristics of WWW Client-based Traces." Boston University, CS Dept, Boston, MA 02215 Technical Report TR-95-010, April 1995. Available at ftp://cs-ftp.bu.edu/techreports/95-010-www-client-traces.ps.Z
- S. Deng, "Empirical Model of WWW Document Arrivals at Access Link." Proc. ICC'96, Dallas, TX, USA, June 1996, pp. 1797-1802
- A.B. Downey, "Evidence for Long-Tailed Distributions in the Internet", Proc. ACM Internet Measurement Workshop 2001
- D.J. Ewing, R.S. Hall, M.F. Schwartz, "A Measurement Study of Internet File Transfer Traffic." Tech. Rep. CU-CS-571-92 Univ. of Colorado, Boulder, USA, Jan. 1992. Available at ftp://ftp.cs.colorado.edu/pub/cs/techreports/schwartz/FTP.Meas.ps.Z

- J. Färber, M. Frank, J. Charzinski, "The WWW-Service in the AMUSE Field Trials: Usage Evaluation and Traffic Modelling." Proceedings of the Expert ATM Traffic Symposium, Mykonos, Greece, Sep. 1997. Available at http://www.ind.uni-stuttgart.de/IND/MA/Fa/papers/wwwusage.ps.gz
- A. Feldmann, A.C. Gilbert, P. Huang, W. Willinger, "Dynamics of IP traffic: A study of the role of variability and the impact of control", Proc. ACM Sigcomm, Cambridge, MA, USA, August 1999. Available at http://www.cs.uni-sb.de/~anja/feldmann/papers/sigcomm99 trace sim.ps.gz
- J. Judge, H.W.P. Beadle, J. Chicharo, "Modeling World-Wide Web Request Traffic." Proceedings of the SPIE Conference 3020, San Jose, CA, USA, Feb. 1997, pp. 92-103
- D.P. Heyman, T.V. Lakshman, A.L. Neidhardt, A.L., "A New Method for Analysing Feedback-Based Protocols with Applications to Engineering Web Traffic over the Internet." ACM Performance Evaluation Review 25(1) June 1997, pp. 24-38
- P. Karlsson, Å. Arvidsson, "The Characteristics of WWW Traffic and the Relevance to ATM." Tech. Rep., Dept. Telecomm. and Math., Univ. of Karlskrona/Ronneby, Sweden; COST 257TD(97)21, May 1997. Available at ftp://www-info3.informatik.uniwuerzburg.de/oub/cost/cost257/may97/257td97021.os
- B. Krishnamurthy, J. Rexford, "Web Protocols and Practice", Addison Wesley 2001
- B. Mah, "An Empirical Model of HTTP Network Traffic." Proc. IEEE Infocom'97, Kobe, Japan, Apr. 1997. Available at http://www.ca.sandia.gov/~bmah/Papers/Http-Infocom.ps
- I. Marsh, "IP Telephony Tracing and Simulation." www.sics.se/~ianm/Telephony/iptel.html
- H.F. Nielsen, J. Gettys, A. Baird-Smith, E. Prud'hommeaux, H.W. Lie, C. Lilley, "Network Performance Effects of HTTP/1.1, CSS1, and PNG." Proceedings of ACM SIGCOMM'97, Cannes, France, Sep. 1997, pp. 155-166. Available at http://www.w3.org/Protocols/HTTP/Performance/Pipeline.html
- V.N. Padmanabhan, J.C. Mogul, "Improving HTTP Latency." Computer Networks and ISDN Systems 28, Dec. 1995, pp. 24-35
- J. Rosenberg, H. Schulzrinne, "The IETF Internet Telephony Architecture and Protocols." IEEE Network 13, May/June 1999, pp. 18-23
- S. Saroiu, P.K. Gummadi, S.D. Gribble, "A Measurement Study of Peer-to-Peer File Sharing Systems", http://www.cs.washington.edu/homes/gribble/papers/mmcn.pdf
- H. Schulzrinne, J. Rosenberg, "A Comparison of SIP and H.323 for Internet Telephony." Proc. NOSSDAV, Cambridge, UK, July 1998. Available at http://www.cs.columbia.edu/~hgs/papers/Schu9807 Comparison.ps.gz
- J. Sedayao, "World Wide Web Network Traffic Patterns." IEEE COMPCON'95 Technologies for the Information Superhighway, San Francisco, CA, USA, Mar. 1995, pp. 8-12
- F. Smith, F. Hernandez Campos, K. Jeffay, D. Ott, "What TCP/IP protocol headers can tell us about the Web, Proc. ACM Signetrics/Performance, Cambridge, MA, USA, 2001, pp. 245–256
- A. Woodruff, P.M. Aoki, E. Brewer, P. Gauthier, L.A. Rowe, " An investigation of documents from the World Wide Web." Computer Networks and ISDN Systems 28, May 1996, pp. 963-980. Available at http://epoch.cs.berkeley.edu:8000/~woodruff/inktomi/

Self similarity and models for fractal traffic

- P. Abry, D. Veitch, P. Flandrin, "Long-Range Dependence: Revisiting Aggregation with Wavelets." Journal of Time Series Analysis 19(3) May 1998, pp. 253-266. Available at http://www.serc.rmit.edu.au/~darryl/A2.ps
- R. Adler, R.E. Feldman, M.S. Taqqu, "A Practical Guide to Heavy Tails." Birkhäuser, Boston, Basel, Berlin, 1998
- V. Bolotin, J. Coombs-Reyes, D. Heyman, Y. Levy, D. Liu, "IP Traffic Characterization for Planning and Control." Proc. ITC 16, Edinburgh, UK, June 1999, pp. 425-436
- M. Caglar, K.R. Krishnan, I. Saniee, "Estimation of Traffic Parameters in High-Speed Data Networks." Proc. ITC 16, Edinburgh, UK, June 1999, pp. 867-876

- M.E. Crovella, A. Bestavros, "Explaining World Wide Web Traffic Self-Similarity." Tech. Rep. TR-95-015, Boston University, CS Dept, Aug. 1995. Available at ftp://cs-ftp.bu.edu/techreports/95-015explaining-web-self-similarity.ps.Z
- M.E. Crovella, A. Bestavros, "Self Similarity in WWW traffic: Evidence and possible causes." Proc. ACM SIGMETRICS'96. Available at http://cswww.bu.edu/faculty/best/res/papers/sigmetrics96.ps
- A. Feldmann, A.C. Gilbert, W. Willinger, T.G. Kurtz, "The Changing Nature of Network Traffic: Scaling Phenomena." ACM SIGCOMM Computer Communication Review 28(2) Apr. 1998, pp. 5-29
- A. Feldmann, W. Whitt, "Fitting mixtures of exponentials to long-tail distributions to analyze network performance models." Performance Evaluation 31, 1998, pp. 245-279
- A. Feldmann, A.C. Gilbert, W.Willinger, "Data networks as cascades: Investigating the multifractal nature of Internet WAN traffic." Proc. SIGCOMM'98, Vancouver, BC, Canada, Sep. 1998, pp. 42-55
- L.J. Forys, A. Erramilli, J.L. Wang, "New Traffic Analysis and Engineering Methods for Emerging Technologies." Proc. GLOBECOM'95, New York, NY, USA, Nov. 1995, pp. 848-854
- R.G. Garroppo, S. Giordano, M. Isopi, M. Pagano, "On the Implications of the OFF Periods Distribution in Two-State Traffic Models." IEEE Communications Letters 3(7) Jul. 1999, pp. 220-222
- M. Greiner, M. Jobmann, C. Klüppelberg, "Telecommunication Traffic, Queueing Models, and Subexponential Distributions." Queueing Systems, 1998
- M. Grossglauser, J.-C. Bolot, "On the Relevance of Long-Range Dependence in Network Traffic." Proceedings of ACM Sigcomm'96. Available at http://www.inria.fr/rodeo/personnel/mgross/WWW/Papers/sigcomm96.ps.gz
- D.P. Heyman, D. Liu, "Assessing the Effects of Short-Range and Long-Range Dependence on Overflow Probabilities. "Proc. ITC Specialist Seminar on IP Traffic, Monterey, CA, USA, Sep. 2000
- P. Huang, A. Feldmann, W. Willinger, "A Non-Intrusive Wavelet-Based Approach to Detecting Network Performance Problems." Proc. ACM Internet Measurement Workshop 2001
- J.K. Jerkins, A.L. Neidhardt, J.L. Wang, A. Erramilli, "Operations Measurements for Engineering Support of High-Speed Networks with Self-Similar Traffic." Proc. ITC 16, Edinburgh, UK, June 1999, pp. 895-906
- W.E. Leland, M.S. Taqqu, W. Willinger, D.V. Wilson, "On the Self-Similar Nature of Ethernet Traffic." Proc. ACM SIGCOMM'93, San Francisco, CA, USA, 1993, pp. 183-193
- I. Norros, A. Simonian, D. Veitch, J. Virtamo, "A Benes formula for the fractional Brownian storage." COST 242 Technical Document (95)004, Version 2, May 1995. Available at http://www.serc.rmit.edu.au/~darryl/COST.ps
- K. Park, W. Willinger, Eds. "Self-Similar Network Traffic and Performance Evaluation." Wiley, New York, 2000

M. Roughan, D. Veitch, M. Rumsewicz, "Computing Queue-Length Distributions for Power-Law Queues." Proceedings of Infocom'98. Available at http://www.serc.rmit.edu.au/~darryl/Infocom98_camera.ps

- M. Roughan, D. Veitch, "A Study of the Daily Variation in the Self-Similarity of Real Data Traffic." Proc. ITC 16, Edinburgh, UK, June 1999, pp. 67-76
- M. Roughan, D. Veitch, P. Abry, "Real-Time Estimation of the Parameters of Long-Range Dependence." IEEE/ACM Trans. Networking 8(4)2000 pp. 467–478
- Z. Sahinoglu, S. Tekinay, "On Multimedia Networks: Self-Similar Traffic and Network Performance." IEEE Comm. Mag. Jan. 1999, pp. 48-52
- S. Sarvotham, R. Riedi, R. Baraniuk, "Connection-level Analysis and Modeling of Network Traffic", Proc. ACM Internet Measurement Workshop 2001

- H.-P. Schwefel, L. Lipsky, "Performance Results for Analytic Models of Traffic in Telecommunication Systems, Based on Multiple On-Off Sources with Self-Similar Behavior." Proc. ITC 16, Edinburgh, UK, June 1999, pp. 55-65
- D. Starobinski, M. Sidi, "Modeling and Analysis of Heavy-Tailed Distributions via Classical Teletraffic Methods." Proc. ITC 16, Edinburgh, UK, June 1999, pp. 45-54
- E. Van den Berg, "Parameter Estimation for Long Range Dependent Data: Single Fine vs. Multiple Coarse Measurements." Proc. ITC Specialist Seminar on IP Traffic, Monterey, CA, USA, Sep. 2000
- D. Veitch, "Novel Models of Broadband Traffic." Proc. GLOBECOM'93, Houston, TX, USA, Dec.1993
- D. Veitch, P. Abry, "A Wavelet Based Joint Estimator of the Parameters of Long-Range Dependence." IEEE Trans. Information Theory 45(3) Apr. 1999.
- W. Willinger, M.S. Taqqu, A. Erramilli, "A bibliographical guide to self-similar traffic and performance modeling for modern high-speed networks." in F.P. Kelly, S. Zachary, I. Ziedins, "Stochastic Networks: Theory and Applications" Royal Statist. Lecture Note Series, Clarendon Press, Oxford, UK, 1996
- W. Willinger, M.S. Taqqu, R. Sherman, D.V. Wilson, "Self-Similarity Through High-Variability: Statistical Analysis of Ethernet LAN Traffic at the Source Level." IEEE/ACM Transactions on Networking 5(1) Feb. 1997, pp. 71-86
- W. Willinger, V. Paxson, "Where Mathematics meets the Internet." Notices of the American Mathematical Society 45(8) Sep. 1998, pp. 961-970. Available at ftp://ftp.ee.lbl.gov/papers/internet-math-AMS98.ps.gz

Measurement and modelling of Dial-up traffic / User Behavior

- A. Adya, P. Bahl, L. Qiu, "Analyzing the Browse Patterns of Mobile Clients", Proc. ACM Internet Measurement Workshop
- V.A. Bolotin, "New Subscriber Traffic Variability Patterns for Network Traffic Engineering." Proc. 15th International Teletraffic Congress (ITC 15), V. Ramaswami, P.E. Wirth, Eds., Washington DC, USA, June 1997, pp. 867-878
- V.A. Bolotin, Y. Levy, D. Liu, "Characterizing Data Connection and Messages by Mixtures of Distributions on Logarithmic Scale." Proc. ITC 16, Edinburgh, UK, June 1999, pp. 887-894
- J. Charzinski, "Good News about Heavy Tails", IEEE Conf. High Perf. Switching and Routing (ATM2000), Heidelberg, Germany, June 2000.
- J. Färber, S. Bodamer, J. Charzinski, "Statistical Evaluation and modelling of Internet dial-up traffic." Proc. SPIE Performance and Control of Network Systems III, Boston, MA, USA, Sep. 1999
- A.A. Fredericks, "Impact of Holding Time Distributions on Parcel Blocking in Multi-Class Networks with Application to Internet Traffic on PSTN's." Proc. ITC 16, Edinburgh, UK, June 1999, pp. 877-886
- J.J. Gordon, K. Murty, A. Rayes, "Overview of Internet Traffic Issues on the PSTN." Proc. 15th International Teletraffic Congress (ITC 15), V. Ramaswami, P.E. Wirth, Eds., Washington DC, USA, June 1997, pp. 643-652
- J. Kilpi, I. Norros: "Call Level Traffic Analysis of a Large ISP." Proc. ITC Specialist Seminar on IP Traffic, Monterey, CA, USA, Sep. 2000
- S. Morgan, "The Internet and the Local Telephone Network: Conflicts and Opportunities." IEEE Comm. Mag. Jan. 1998, pp. 42-48
- P. Orenstein, "A preliminary analysis of Work-at-Home Traffic Characteristics." Proc. ITC 16, Edinburgh, UK, June 1999, pp. 907-918

TCP and TCP models

- M. Allman, "On the Generation and Use of TCP Acknowledgements." ACM SIGCOMM Computer Communication Review 28(5) Oct. 1998, pp. 4-21
- Å. Arvidsson, P. Karlsson, "On Traffic Models for TCP/IP." Proc. ITC 16, Edinburgh, UK, June 1999, pp. 457-466

- H. Balakrishnan, V.N. Padmanabhan, "How Network Asymmetry Affects TCP." IEEE Communications Magazine 39(4) 2001 pp. 60–67
- C. Barakat, E. Altman, "Performance of Short TCP Transfers." Proc. Networking 2000, Paris, France, May 2000, pp. 567–579
- T. Bonald, "Comparison of TCP Reno and TCP Vegas via Fluid Approximation", INRIA Rapport de Recherche No. 3563, Nov. 1998
- C.P. Charalambos, V.S. Frost, J.B. Evans, "Performance of TCP Extensions on Noisy High BDP Networks." IEEE Commun. Letters 3(10)1999 pp. 294–296
- S. Floyd, "A Report on Recent Developments in TCP Congestion Control." IEEE Communications Magazine 39(4) 2001 pp. 84–90
- S. Low, L. Peterson, L. Wang, "Understanding TCP Vegas: A Duality Model." Proc. ACM Sigmetrics / Performance 2001, Cambridge, MA, USA, June 2001, pp. 226–235.
- M. Mathis, J. Semke, J. Mahdavi, T. Ott, "The Macroscopic Behavior of the TCP Congestion Avoidance Algorithm." ACM Computer Communication Review 27(3), July 1997
- J.C. Mogul, G. Minshall, "Rethinking the TCP Nagle Algorithm." ACM Computer Communication Review 31(1)2001 pp. 6–20
- J. Padhye, V. Firoiu, D. Towsley, J. Kurose: "Modeling TCP Throughput: A Simple Model and its Empirical Validation" ACM Computer Communication Review (Proc. ACM Sigcomm'98), Vol. 28 No. 4, Oct. 1998, http://www.acm.org/sigcomm/sigcomm98/tp/paper25.pdf
- H.-P. Schwefel, "Behavior of TCP-like elastic traffic at a buffered bottleneck router." Proc. IEEE Infocom, Anchorage, AK, USA, April 2001. Available at http://wwwjessen.informatik.tumuenchen.de/~schwefel/TCP_paper.ps.gz
- I. Yeom, A.L.N. Reddy, "Modeling TCP Behavior in a Differentiated Services Network." IEEE/ACM Trans. Networking 9(1)2001 pp. 31–46

Measured Performance

- M. Allman, "Measuring End-to-End Bulk Transfer Capacity", Proc. ACM Internet Measurement Workshop 2001
- P. Barford, M. Crovella, "Measuring Web Performance in the Wide Area." ACM Perf. Eval. Review 27(2)1999 pp. 37–48
- P. Barford, M. Crovella, "A Performance Evaluation of Hyper Text Transfer Protocols." Proc. ACM Sigmetrics, Atlanta, GA, USA, May 1999
- P. Barford, M. Crovella, "Critical Path Analysis of TCP Transactions." Proc. ACM Sigcomm Stockholm, Sweden, Sep. 2000
- E. Cohen, H. Kaplan, "Prefetching the Means for Document Transfer: A New Approach for Reducing Web Latency." Proc. IEEE Infocom Tel Aviv, Israel, March 2000
- K.P. Gummadi, S. Saroiu, S.D. Gribble, "King: Estimating latency between arbitrary Internet end hosts.", Proc. Internet Meas. Workshop 2002
- M.A. Habib, M. Abrams, "Analysis of Sources of Latency in Downloading Web Pages." Proc. WebNet, San Antonio, USA, Nov. 2000
- C. Huitema, S. Weerahandi, "Internet Measurements: the Rising Tide and the DNS Snag." Proc. ITC Specialist Seminar on IP Traffic, Monterey, CA, USA, Sep. 2000
- J. Jung, E. Sit, H. Balakrishnan, R. Morris, "DNS Performance and the Effectiveness of Caching", Proc. ACM Internet Measurement Workshop 2001
- S. Khirman, P. Henriksen, "Relationship between Quality-of-Service and Quality-of-Experience for

Public Internet Service", Proc. PAM 2002

B. Krishnamurthy, C.E. Wills, "Analyzing Factors that Influence End-to-End Web Performance." Computer Networks 33 (1–6) 2000 pp. 17–32

- R. Liston, S. Srinivasan, E. Zegura, "Diversity in DNS Performance Measures", Proc. ACM Internet Measurement Workshop 2002
- T. Zseby, "Deployment of Sampling Methods for SLA Validation with Non-Intrusive Measurements", Proc. PAM 2002

Dimensioning

- S. Bodamer, J. Charzinski: "Evaluation of Effective Bandwidth Schemes for Self-Similar Traffic." Proc. ITC Specialist Seminar on IP Traffic, Monterey, CA, USA, Sep. 2000
- J. Charzinski, "Fun Factor Dimensioning for Elastic Traffic", COST 257 Tech. Doc. (00)28, Oslo, May 2000. Avail. at http://www-info3.uni-wuerzburg.de/cost/
- A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford: "Deriving Traffic Demands for Operational IP Networks: Methodology and Experience." Proc. ACM Sigcomm, Stockholm, Sweden, August 2000
- D.P. Heyman, T.V. Lakshman, A.L. Neidhardt, "A New Method for Analysing Feedback-Based Protocols with Applications to Engineering Web Traffic over the Internet" Proc. ACM SIG-METRICS'97, Seattle, WA, USA; ACM Perf. Eval. Review Vol. 25, No. 1, pp. 24–38.
- J.G. Klincewicz, J.A. Schmitt, R.T. Wong, "The Design of IP Enterprise Networks with QoS", Proc. ITC Specialist Seminar on IP Traffic, Monterey, CA, USA, Sep. 2000
- K. Lindberger, "Balancing Quality of Service, Pricing and Utilization in Multiservice Networks with Stream and Elastic Traffic" Proc. ITC 16, Edinburgh, UK, June 1999, pp. 1127–1136.
- M. Nabe, M. Murata, H. Miyahara, "Analysis and modeling of World Wide Web traffic for capacity dimensioning of Internet access lines." Performance Evaluation 34, 1999, pp. 249–271
- I. Norros, "On the Use of Fractional Brownian Motion in the Theory of Connectionless Net-works", IEEE JSAC Vol. 13, No. 6, 1995, pp. 953–962.

Server, Caching and Proxies

- M.F. Arlitt, " A Performance Study of Internet Web Servers." Master Thesis, Dep. Computer Science, University of Saskatchewan, Saskatcon, Saskatchewan, S7N 0W0, 1996. Available at ftp://ftp.cs.usask.ca/pub/discus/thesis arlitt co.ps.Z
- N. Bhatti, A. Bouch, A. Kuchinsky, "Integrating User-Perceived Quality into Web Server Design." Comp. Netw. 33 (1–6) 2000 pp. 1–16
- J.C. Bolot, P. Hoschka, "Performance Engineering of the World Wide Web: Application to dimensioning and cache design." Computer Networks and ISDN Systems 28, May 1996, pp. 1397-1405
- H.-W. Braun, K.C. Claffy, "Web traffic characterization: an assessment of the impact of chaching documents from NCSA's web server." Computer Networks and ISDN Systems 28, Dec. 1995, pp. 37-51
- J. Dilley, M. Arlitt, "Improving Proxy Cache Performance: Analysis of Three Replacement Policies." IEEE Internet Computing Nov. 1999 pp. 44–50
- Y. Fujita, M. Murata, H, Miyahara, "Performance Modeling and Evaluation of Web Systems with Proxy Caching." Proc. ITC 16, Edinburgh, UK, June 1999, pp. 1179-1188
- A. Loutonen, K. Altis, "World-Wide Web Proxies." Computer Networks and ISDN Systems 27 Nov. 1994, pp. 147-154
- E.M. Nahum, M.-C. Rosu, S. Seshan, J. Almeida, "The Effects of Wide-Area Conditions on WWW Server Performance." Proc. ACM Sigmetrics / Performance 2001, Cambridge, MA, June 2001, pp. 257–267
- D. Neal, "The Harvest Object Cache in New Zealand." Computer Networks and ISDN Systems 28, May 1996, pp. 1415-1430
- P.K. Reeser, R.D. van der Mei, R. Hariharan, "An Analytic Model of a Web Server." Proc. ITC 16, Edinburgh, UK, June 1999, pp. 1199-1208

QoS

- M. Asawa, "Measuring and Analyzing Service Levels: A Scalable Passive Approach." Proc. Sixth International Workshop on Quality of Service (IWQoS'98), May 1998, pp. 3-12
- T. Bonald, J.W. Roberts, "Performance of Bandwidth Sharing Mechanisms for Service Differentiation in the Internet." Proc. ITC Specialist Seminar on IP Traffic, Monterey, CA, USA, Sep. 2000
- T. Bonald, L. Massoulié, "Impact of Fairness on Internet Performance." Proc. ACM Sigmetrics / Performance 2001, Cambridge, MA, USA, June 2001, pp. 82–91.
- J. Charzinski, "Problems of Elastic Traffic Admission Control in an HTTP Scenario." Proc. IWQoS, Karlsruhe, Germany, June 2001.
- R.A. Guérin, V. Pla, "Aggregation and Conformance in Differentiated Service Networks A Case Study." Proc. ITC Specialist Seminar on IP Traffic, Monterey, CA, USA, Sep. 2000
- A. Kumar, M. Hegde, S.V.R. Anand, B.N. Bindu, D. Thirumurthy, A.A. Kherani, "Nonintrusive TCP Connection Admission Control for Bandwidth Management of an Internet Access Link." IEEE Communications Magazine 38(5) 2000 pp. 160–167
- L. Massoulié, J. Roberts, "Arguments in favour of admission control for TCP flows." Proc. ITC 16, Edinburgh, UK, June 1999, pp. 33-44
- M. May, J.C. Bolot, A. Jean-Marie, C. Diot, "Simple Performance Models of Differentiated Services Schemes for the Internet." Proc. IEEE Infocom New York NY, USA, March 1999
- R. Mortier, I. Pratt, C Clark, S. Crosby, "Implicit Admission Control." IEEE JSAC 18(12) 2000 pp. 2629–2639
- K. Nichols, S. Blake, F. Baker, D. Black, "Definition of the Differentiated Service Field (DS Field) in the IPv4 and IPv6 Headers.", RFC 2474, Dec. 1998
- J.W. Roberts, S. Oueslati-Boulahia, "Quality of Service by Flow Aware Networking." Phil. Trans. Royal Soc. Series A Vol. 358 No. 1773, August 2000
- S. Shenker, "Fundamental Design Issues for the Future Internet." IEEE JSAC 13(7), Sep 1995, pp. 1176-1188
- L. Zhang, S. Deering, D. Estrin, S. Shenker, D. Zappala, "RSVP: A New Resource ReSerVation Protocol." IEEE Network, Sep. 1993, pp. 8-18

Simulation

- M.E. Crovella, L. Lipsky, "Long-Lasting Transient Conditions in Simulations with Heavy-Tailed Workloads." Proc. Winter Simulation Conf. 1997
- S. Floyd, V. Paxson, "Why We Don't Know How To Simulate The Internet." Proc. 1997 Winter Simulation Conference, Atlanta, GA, USA, Dec. 1997. Available at http://www.aciri.org/floyd/papers/wsc97.ps
- H.-P. Schwefel, L. Lipsky, M. Jobmann, "On the Necessity of Transient Performance Analysis in Telecommunication Networks." Feb. 2001. Available at http://wwwjessen.informatik.tumuenchen.de/~schwefel/itc17.ps.gz