
Fun Factor Dimensioningfor Elastic Traffic

JoachimCharzinski

SiemensAG, InformationandCommunicationNetworks,
Hofmannstr. 51,D-81359Munich, Germany,

Tel. +49 8972246803,Fax +49 8972226877,
j.charzinski@ieee.org

Abstract

In this paperwearguethat dimensioningfor elastictraffic
can be achieved in somenetworkscenarios.The“fun fac-
tor” � is introducedasa basicmeasureof perceivedquality
of service(QoS)for elastictraffic. Astheimpactof � onthe
perceivedQoSis easyto see,targetvaluesfor � for residen-
tial or businessnetworkaccesscan be quantified.Several
existing modelsfor dimensioningdata networksare com-
pared, theM/G/ � -PSmodelis generalizedto arbitrary link
ratesand a rate convolution approach is presentedwhich
allows to dimensionlinks whenthedistributionof bit rates
available from the Internet is known.All approachesare
comparedusinga consistentsetof parametersderivedfrom
recenthigh-speedaccessmeasurementresults,givinganin-
dication of thegeneral relationbetweenthe fun factor and
the packet loss probability as a more classicalQoSmea-
sure.
Index terms: Dimensioning;perceivedQoS;Fun Factor;
TCP; Elastic Traffic; Comparison;M/G/r-PS; Processor
Sharing.

1 Intr oduction

It hasbeenarguedthat dueto its complexity andconstant
growth, every attemptat dimensioningpartsof theInternet
must fail. However, thereare certainpartsof the Internet
andsomeotherIP networkswheredimensioningcansuc-
cessfullybeachieved.Oneexampleis thetuningof theca-
pacityof anaccesstrunk line � 2 to thetotal capacityof all
subscriberaccesslines � 1 in thescenariodepictedin Fig. 1.

The trunk line must have enoughcapacityin the up-
streamdirection(from subscribersto corenetwork) to ac-
comodatethesumof all upstreamtraffic aswell asenough
downstreamcapacityto satisfy the downloadneedsof all
subscribers.

If all subscribersfully utilizedtheiraccesslineswith full-
rate streamtraffic, the trunk line capacitywould have to
be the sumof all accessline rates.However, judging from
currentInternetusage,a multiplexing gaincanbeachieved
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Figure 1. Access architecture

by exploiting thestatisticalfeaturesof thedownloadtraffic,
which is mostly elasticTCP traffic. The following investi-
gationswill help to find andunderstandthe dimensioning
targetto aimfor.

Otherscenariosarenon-InternetIP networkslike com-
pany Intranetsor the fixed accessnetwork part of future
mobile radio systems,which will also carry a significant
amountof datatraffic. Hereit is especiallyimportantto of-
fer a certainlevel of quality also to the elasticdatatraffic
asthe mobile radio link is a scarceresourcewhich should
haveahighutilizationandthereforethetrunkline shouldbe
dimensionedsuchthatno radiolink capacityis wasted.

In differentiatedservicesnetworks,thefollowingdimen-
sioningcriteriacanbeusedfor thehigherquality classesin
orderto estimatetheachievableQoSin aclassor to find out
which amountof capacityto allocateto a class.

Two extremepositionshave beenfoundin theliterature
asto which parametervaluesto choosewhendimensioning
for elastictraffic.

Someauthors,e.g. [1], seeelastictraffic equalto best-
effort traffic which doesnot generatemuchrevenuewhen
operatinga network and thereforeargue that a minimum
rate guaranteeplus admissioncontrol is the right way to
achieve a high network utilization while still maintaining
a minimumnecessaryservicelevel. Themain argumentin
favour of this approachis that customerstend to pay only
for the servicethey needand provided that elastic traffic
can be transportedwith a minimum tolerablerate,no ad-
ditional revenuecanbe generatedfrom offering morethan
thisnecessaryrate.

Otherauthors,e.g.[2], seetheelastictraffic asthemajor

37-1



reasonwhy subscribersare currently investing into high-
speedaccesslinks and thereforethe accesssystemmust
be ableto offer adequatecapacityto this traffic. However,
when traditional QoS measuresandparametervalueslike
a lossprobability of �����	� areemployed,the resultinglink
capacitieswill beoverdimensioned[3].

In Sec.2 we will further discussthe dimensioningis-
suesand introducethe fun factor as a parameterfor per-
ceived QoS with elastictraffic. In Sec.3 differentmodels
for streamandelasticdatatraffic aresummarizedusinga
consistentnotation,whichhelpscomparingthecorrespond-
ing resultsusingmeasuredtraffic parametersin Sec.4.

2 Dimensioningfor elastictraffic

TraditionalQoSmeasureslike meandelay, delayquantiles,
delayvariationor lossprobabilitymissthepoint whenthey
areemployedwith elastictraffic. On theonehand,TCP is
well ableto adaptits transmissionrateto bandwidthbottle-
necks,sothatthepacketlossprobability is keptat a certain
low level, which is alsoevaluatedfor rate feedbackinfor-
mation.On theotherhand,a low bandwidthcanhave asig-
nificantimpacton theperceivedQoSof a connectionasthe
main useof a TCP connectionis to transporta given traf-
fic volumefrom onehostto another. A goodQoSmeasure
shouldthereforeconsiderthe achievablebandwidthas the
mostrelevantfor elastictraffic.

2.1 Dimensioningtargets

As introducedin Sec.1, the scopeof this paperis dimen-
sioningoneaccesstrunk line sharedby a numberof access
lines.Themaindimensioningtargetis tomakesure(accord-
ing to a metric to be selected)that this accesstrunk is not
thebottleneckfor theupstreamor downstreamtraffic onthe
individual accesslines.Extensionsof this approachcanbe
imaginedin networkplanningwherethesamemetricscan
be usedto describethe quality of serviceachieved on the
differentlinks in a network.

In thefollowingsections,weconcentrateonasingletraf-
fic classandstationaryoffered traffic. Whendealingwith
non-stationarytraffic, it is usuallyadvisableto restrict the
analysisto peaktraffic periodsasotherwisea long time of
low traffic demandwouldsmoothout thecritical congestion
problemsoccurringduringa peaktraffic period.For multi-
ple traffic classesto beconsidered,e.g.methodsfrom [4, 1]
canbeemployed.

The modelsintroducedlater takea traffic characteristic
andprovideQoSor dimensioningresultswith respectto this
traffic characterization.Caremustbetakenin orderto focus
on theright level of interestandon a situationapplicableto
the considerednetworkscenariowhenspecifyingthe traf-
fic model.An xDSL (digital subscriberline) or cablemo-

demnetworkusuallyprovidesline terminationsinside the
networkfor eachsubscriber, regardlessof their activity, so
thatalso“always-on”connectionscanbe provided.In this
case,themaximumnumberof active subscribersis equalto
the total numberof subscribers.In contrast,dial-upaccess
usually limits the numberof subscriberssharingthe same
accesstrunk line to thenumberof accessportsconnectedto
this line, sothattheamountof networkresources(i.e.band-
width) to beprovidedperaccessportwill differsignificantly
in bothcases.In therestof this paper, we will usethe traf-
fic observed in activeclient sessions.In a dial-up network
model,this is alsothenumberof accessportswhereasin an
xDSL or cablemodemnetworkmodelthe total numberof
subscriberswill behigherthanthenumberof active access
linesduringthepeakhour.

2.2 Buffers

A mainissueof distinctionbetweenmodelsfor streamtraf-
fic andmodelsfor elastictraffic is theway buffersarecon-
sidered.For non-elasticdata traffic, burst scalebuffering
is often usedto reducepacketloss.On the contrary, elas-
tic traffic is able to adaptto the availablebandwidthsand
thereforelargebuffersareneitherneedednoraseffective as
with non-elastictraffic. Long-rangedependence(LRD) in
datatraffic [5], whichis aconsequenceof heavy-tailedburst
sizesanddurations[6], furtherreducestheeffectivenessof
buffersbecausethepacketlossprobabilitycannotbesignifi-
cantlyreducedevenby hugebuffersin thepresenceof LRD
traffic [7, 8]. In thosecases,largebuffersdrasticallyincrease
thepacketdelaywithout really reducingpacketloss.

Consequently, it is a sensibleapproachto assumethat
all networknodesprovideenoughbuffer spaceto copewith
packetscalequeueing1 but buffersaresmallenoughnot to
increasepacketdelaystoo much.In suchan environment,
bufferlessfluid loss modelsor processorsharingmodels
with infinite buffer areapplicable– providedthatin thereal
systemthereis asmallbuffer presentfor packetscalemulti-
plexing. Usingbufferlessmodelshastwo majoradvantages
over buffer models:Heavy tailedON phasedistributionsdo
not influencethe resultsandthe actualbuffer sizesof net-
work elementsneednotbeknown.

In the following, we will be estimatingmessagedelays
from bufferlessmodels,in this way neglecting the packet
queueingdelaysoccuringin realbuffers.This estimationis
justified if the total messageor burst transfertime is much
largerthanthedelayexperiencedby theindividualpackets.

1Packetscalequeueingdescribesthe effect that due to asynchronous
multiplexing of packettraffic, multiple packetsfrom different input links
mustbeserializedto sharethesameoutputlink.
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2.3 Accesscontrol

Thereare several approachestowardsquality problemsin
the Internettoday. Oneextremeis to “throw bandwidthat
them”, the otherextremeis to solve quality problems“the
old way”, i.e. by introducing intelligenceat the network
layer, usingaccesscontrol(AC) to ensurea connectioncan
only beacceptedwhenthereis enoughbandwidthavailable
alongthewholepathit will takethroughthenetwork.

[4, 1] arguein favour of AC in orderto allow a highnet-
work utilizationwhile still guaranteeingaminimumratefor
eachTCPconnection.But if no accesscontrolis employed,
TCPconnectionsstill receive aQoSthatcanbestatistically
quantifiedanddimensionedto have acertainmeanor quan-
tile valueaswe will show below. Thedifferencesbetween
this dimensioningandemployingaccesscontrolare:
 Accesscontrolrequiresadditionalnetworklayerfunc-

tions.
 Accesscontrolallows to reachhighernetworkutiliza-
tion.
 Underunplannedoverload,accesscontrol reducesthe
QoS by increasingthe blocking probability for new
connectionswhereasin networkswithout accesscon-
trol, theperceived QoSof all connections– including
thealreadyexisting ones– is reduced.In theextreme,
this canleadto a starvationof all connections.

Deriving dimensioningresultswithoutAC cantherefore
be seenas a stepin quantifying how much bandwidthto
“throw at the problem”, i.e. how mucha link needsto be
overdimensionedin comparisonto AC in orderto deliver a
comparabletotal QoScomprisingthe blockingprobability
aswell astheachievableratewithin anexisting connection.
As mentionedabove, this costof overdimensioninghasto
beput in contrastto thesavingsmadeby not investinginto
network layer functionsto supportAC functionsin every
router.

2.4 Definition of the fun factor

In aneffort to capturethequality of servicefor elastictraf-
fic, thefollowingmeasureis defined:A parameter� , which
shouldbeassimpleaspossible,givestheQoSachieved in
a TCPconnectionrelative to a theoreticallypossiblevalue.
In addition, � shouldhave a maximumof oneunderideal
circumstancesanda minimumof zeroif thereis no service
at all.

Making this quantitya relative measureof QoSallows
us to quantify the relative differenceof systems.Consider
againtheaccessscenariodepictedin Fig. 1.Herethe“ideal”
situationis asfollows:Every subscribercanutilize the full
bandwidthof theiraccessline whenever they want.Relative

to this referencesituation,the servicedegradationcan be
observedasan increasein transfertime or asa decreasein
theavailablerate.Using � to denotea randomvariableand� for its expectation������ ��� , this leadsto the following
two equivalent formulationsfor the accessfun factor ���
with the bit rate � andthecapacity ����� of anaccessline
where����� ��!#" is the time a datatransferwould have takenif����� hadbeenutilized fully.��� � � �$� �%! "�'&)(�* �)+�,-�%� (1)� � � ��� �/. �102���� ��� (2)

The quantity � is called “fun factor” to stressthe fact
thatthecorrespondingelastictraffic servicecanusuallyalso
beusedat muchlower rates– with a correspondinglossin
the enjoymentof usage.As such,it is also applicablefor
differentserviceprovidersto usethe fun factorasa means
of differentiation.

In thefollowing, only this accessfun factorwill becon-
sideredandconsequentlytheindex 3 will bedropped.Sim-
ilar investigationscanandshouldhoweverbeconductedfor
otherfun factorsaswell.

For businessscenarios,of coursethe sameterm can
be changedinto “accessline usageefficiency”. Both time
basedandmoney basedmarketsarein principledescribed
adequatelyby this measureas it answersboth questions
“How long did I have to wait usingmy flat rateservice?”
as well as “How much could I have gainedfrom a high-
priceserviceif thenetworkhadbeenperfect?”.The recip-
rocalquestionsaddressingthecost,of course,cannotbean-
sweredin generalasthe answersdependon the actualtar-
iffing structures.

The sameapproachas for the accessfun factor canbe
takentowardsotherfun factorswith respecttootherlimiting
resourceslike e.g. the (variable)rate available in the real
Internet,the rateavailable from a server or the ratethat a
client device getswith respectto the maximumrateit can
consume.

Notethattheideaof consideringtheratedecreaseor de-
lay increaseas a QoS parameterfor elastic traffic is not
new. A meandelay factor 4�5768�-9:� to describethe ser-
vice degradationdue to less-than-idealtransmissionrates
for elastictraffic hasbeendefinedbefore[9, 1]. However,
theattemptto quantify �;�<��� ��� in orderto dimensionfor
acertaintargetvalueandto find correspondingtargetvalues
for lossmodelsis novel.

Continuingtheabove argumentsabouttime andmoney
basedmarkets,wecanestimatetargetvaluesfor � : Residen-
tial subscribershave boughtnew Internetaccessequipment
increasingthebandwidthby factorsof 2–3.Assumingthat
theold equipmentwasoperatedat thelimits of its through-
put capacity( � 6=� ), thesameratewould correspondto a
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fun factor of �>� 0.3–0.5with the new equipment.A no-
ticeableimprovementcan thereforebe felt if � 0 0.7–0.8,
demandingthat theaccessaswell asthewide areaservice
providerscanoffer thecorrespondingthroughput.For busi-
nesscustomers,on theotherhand,thetargetvaluesshould
bemuchhigher, e.g.95 or even99%,dependingon thede-
greeof servicerequested.For high-qualitybusinessaccess,
one could also imaginedeterminingthe distribution of �
anddemandingthattheratioof connectionswith �@?2AB�:C
belessthana certainpercentageduringbusyhours.

3 Traffic modelsfor dimensioning

In the following, a few modelsfor dimensioningdatanet-
works are summarized.A more extensive summaryand
comparisonof classicalmodelsis attemptedin [10]. There
aresomefundamentaldifferencesbetweenthetraffic mod-
elssuchasa finite or infinite numberof traffic sources,the
assumptionof greedyvs. ratelimited sourcesandbetween
thesystemmodelswherelossmodelswith or withoutbuffer
areopposedto ratesharingmodels.

3.1 EngsetFluid Flow

A simpleapproachfor a burstscalelossmodelwith homo-
geneousON/OFFsourceshasbeengivenby [11, 9, 1, 2]. It
is basedon fluid flow modellingandcomputesthefraction
of fluid traffic that is lost whenmoretraffic is offeredthan
a bufferlesssystemcanhandle.Beinga fluid model,it does
notconsiderpacketscalequeueingandlossandis therefore
realisticfor a realsystemwith smallbuffers.Thecomplete
absenceof a buffer in thefluid modelallows concentrating
on ratemultiplexing effectswithout having to includeany
traffic correlationinto the model.In essence,the model is
robust with respectto correlationparameterslike meanor
distribution of burst (ON phase)durationor the long-term
correlationsdescribedby theHurstparameter.

A singlesourceis describedby the parameters��D�E for
the datarate in the ON phaseand F for the probability of
the sourceto be in theON state.If the traffic from G such
sourcesis multiplexedona link with a totalcapacityH � , the
fractionof fluid traffic lost, I " &%*�* , is givenby (3):

I " &%*�* � JK��LNMPO�Q�R%+�SUT	V W G X�Y F �[Z ��\;F^] J � � X�_ ��D�E@\`H �a _ H � (3)

Eq. (3) computesI " &�*%* from a sum over all overload
states,usingthebinomialdistribution I � for theprobability
of

X
sourcesbeingin the ON state,assumingindependent

statetransitionsof all sources.I � � W G X Y F �'Z ��\bF^] J � � (4)

Therelative totalofferedloadin thiscaseisac� GdF^��D�EH � (5)

3.2 Fractional Brownian Motion

Norros [12] introduceda fluid model of a buffer fed by
FractionalBrownianMotion traffic in anattemptto incorpo-
ratethelong-rangedependencepropertiesobservedin many
datatraffic measurements.Thebasictraffic modelis a fluid
sourcethatgeneratestraffic accordingto thearrival process3fe �hg �ji@k g/lUm e (6)

with meanrate g , variancecoefficient l andHurstparame-
ter n (propertyof theFBM m e ).

On the time scaleof �'o@0p� , the fractional Brownian
Motion m erq hasanexpectationof zeroanda varianceequal
to one.According to the scaling law for self-similar traf-
fic, thevarianceof averagevaluestakenover a longertime
decreasesdependenton theHurstparametern :s^tvu1w ��'9x� o m ezy � W �� o Y ��{}|�~ �����

(7)

Accordingly, the varianceof 3fe dependson the counting
time � : s^t�u w � o� 3fe y ��g/l _ W �� o Y ��{[|�~'�d���

(8)

This equationalsoexplains the role of thevariancecoeffi-
cient l andshowshow it canbedeterminedfrom avariance-
timeplot.

Thelink capacityneededto accomodateonesourcewith
parametersg , l and n is givenas� �2g i��#n � Z ��\bn�] ~'�d� k \f���P�������� l �� ��� ��� �� g �� �

(9)
if a lossrate � is tolerableanda burstscalebuffer of size �
is present.For multiplexing G homogeneoussources,Nor-
ros [12] gives the scalinglaws g | J � � G _ g |�~�� � l | J � �G _ l |�~�� and n;| J � � n;|�~�� .
3.3 ProcessorSharing

Processorsharing(PS)modelsprovide a simpleandeffec-
tiveway of dealingwith theelasticpropertiesof traffic car-
riedby transportprotocolswhichadaptthetransmissionrate
to theavailablecapacityin thenetwork.

Lindberger[1] describesaPSqueueingmodelM/G/ � -PS
for a link which canaccomodate� timesthepeakrate ��D�E
of anindividualsource,i.e.� � H �� D�E (10)
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for integer � andnegative exponentialinterarrival time dis-
tribution(i.e. aninfinite numberof sources)offeringa total
offered load a to the link. Lindberger derives a meande-
lay factor 4 5 which is roughly ��9 � (except for the aver-
agingprocess,as 4 5 ����� ��9B������ �-9 ��� � � ). In addition,
generallythereis a differencebetweentime averagesand
per-connectionaverages.

For sourceswhichhave amaximumrategreaterthanthe
link rate,thecorrespondingM/G/1-PSmodelgivesa delay
factorof 4 5 � �-9 Z ��\ a ] leadingto � 61��\ a .

For theM/G/ � -PSmodel,thedelayfactoris basedonEr-
lang’s formulafor waiting probability in thecorresponding
M/G/ � -FIFOwaiting system:

4 5 � �Ni �� Z ��\ a ] _ | +'� �z�+}�Z ��\ a ] + �^~���L�o | + � � ��z� i | + � � �+}� (11)

In order to usethis model for dimensioninglinks, it is
favourableto extendit toarbitrarylink rates,i.e.non-integer
valuesof � . Define �[¡ asthenumberof sourcesthatcanbe
servedby thelink without extra delay:�}¡ �£¢ H ��-DjE¥¤ (12)

Using ¦ asa randomvariablefor thenumberof sourcesin
theON state,theexpectationof therandomdelayfactor §�5
is 4 5 � ��� § 5 . ¦©¨2� ¡ �^ª�« �¬?@¦�¨2� ¡:ª�« ¦£0®� i ¯K��Ld+ °'± ~ ��� §�5². ¦ � X ��ª�« ¦ � X ª�« ¦�02�  (13)

While §�5 is equaltoonein thestates¦³¨´�}¡ , it is
X 9B� when

moresourcesareactive.Thestateprobabilitiesaregivenby

I � � ª�« ¦ � X  �>µ | +'� � ��z� Ido ,
X � �U���B� �U��¶-¶}¶r� ¡a � � + ° I·+ ° ,
X 02� ¡

(14)
and Ido �p¸ + ° ��~K ��L�o Z � a ] �X%¹ i ���\ a Z � a ] + °�[¡ ¹@º ��~

(15)

Theresultingmeandelayfactoris4�5 � �Ni a� Z ��\�I�o}] W ���\ a i@�[¡²\b� Y_ | +'� �z� °+ ° �Z �²\ a ] + ° �^~���L�o | +'� � ��z� i | + � � � °+ °[� (16)

Approximating �d\vI o by a andthewaitingprobabilityin
(16) by thelossprobabilityascomputedfrom othermodels
in thissection,we obtainthefollowing very coarseapprox-
imation: 4�5»61�Ni I·" &�*�*� Z ��\ a ] (17)

Note that (17) is too optimistic as the waiting probability
canbesignificantlyhigherthanthelossprobabilityin acor-
respondingbufferlesssystem.

3.4 Rateconvolution

For a bufferlessfluid losscomputation,thelossprobability
is equalto theprobability of thesumof all active sources’
ratesbeinggreaterthanthelink rate.If theratedistribution
for eachsingleaccessline is given by the ratedistribution
probabilitydensity¼ 5 Z � ] � ��%½ ª�«�¾ D�E ¨ �  with Laplace
transform(LT) ¿ 5 ZzÀ ] , thisprobabilityis givenby the G -fold
convolutionof ¼ 5 Z � ] with itself, ¼ 5�Á , whichhastheLT¿ 5�Á ZrÀ ] � Z ¿ 5 ZzÀ ]%] J ¶ (18)

Using the correspondingcomplementarydistribution
function � 5�Á Z � ] , thesystemoverloadprobabilityisI & ,}" � � 5�Á Z H �^] (19)

theratio of lost traffic is givenby

IU" &�*%* � �G ��� ¾ D�E�� ¯Â½�LdO�Q Z � \bH#�^]z¼ 5�Á Z � ]�Ã �
� �G ��� ¾ D�E�� ¯Â½�LdO Q ��5 Á Z � ]�Ã � (20)

This rate envelope multiplexing (REM) approachcan
be regardedassimilar to a continuousstateEngsetmodel
where the sourcesare specifiedwith a distribution of in-
stantaneousratesinsteadof a probability of activity and
a fixed ON staterate.With this feature,(20) can be used
for sourceswith independentlyvarying rates.In the case
of elasticsourcessharingcommonlinks, the ratesareob-
viously not varying independentlybut vary such that the
aggregatedratepeaksaresmallerthanwhat they could be
underthe assumptionof independence,so that (20) gives
an upperboundfor I " &%*�* : If connectionsdo not shareany
commonlink in thewide areanetworks,they will be inde-
pendent.If on theotherhandthey do sharea commonlink,
they will slow down eachotherleadingto areductionof the
lossprobabiltiy I " &�*%* occuringon theaccesslink.

The rate convolution approachdiffers from the other
modelsin thatit cantakethedistributionof achievablerates
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from the Internetinto account.This featuremakesthe for-
mulabothmorerealisticandat thesametime moredepen-
denton up-to-datemeasurementresultsthanthe otherap-
proaches.In addition,thereis in practicea problemof find-
ing theright averagingtimeresolutionto determinetherate
distributions.

3.5 Simulation modelsused

Two burst level (fluid flow) simulationprogramshave been
usedto allow more detailedstatisticalanalysis,validation
andextensionof theanalyticalresultsgivenabove. In both
simulation models,the traffic is modeledby a fluid flow
with an intensityequalto the sumof the ratesof the cur-
rently active sources.ProgramA allows loss simulations
with variousbuffer sizes.

In contrast,ProgramB simulatesaprocessorsharingsys-
tem whereat eachsourceON and OFF instantthe avail-
ablecapacityis re-distributedfairly amongthecurrentlyac-
tive sourcestaking into accountthe source’s currenttarget�-DjE , re-computingtheresidualtraffic to betransmittedby
eachsourceduringits ON phase.In simulationmodelB no
explicit buffer is simulatedas all sourcesare assumedto
adaptto thenew availablerateswithout delay. TheON rate
of eachsourceis drawn from a ratedistribution ��5 Z � ] �ª�«x¾ DjE<0 �  at thebeginningof a burstandis assumedto
be a constanttargetvalueduringthedurationof thewhole
burst.This simulationmodelallows to investigaterealistic
distributionsof ratesavailable from the wide-areaInternet
but doesnot include TCP behaviour details like non-zero
reactiontimesor phasesynchronizationeffects.

3.6 Summary of models

Tab. 1 summarizesthe propertiesof the different models
with respectto thenumberof sources,theburst level buffer
sizes,sourceratelimit, sourcetypeandratesharingoptions.

Table 1. Model summary

buffer source rate
model sources size Ä}ÅUÆ type sharing

EngsetFluid Ç 0 Ä}ÅUÆ on/off no

FBM È É FBM no

M/G/ Ä -PS É É Ä}ÅUÆ on/off yes

RC Ç 0 ÊÌË�Í�ÈUÎ open no

SimulationA Ç È Ä ÅUÆ on/off no

SimulationB Ç 0 ÊÌË�Í�ÈUÎ on/off yes

4 Comparisonof results

The resultsobtainedfrom the different modelsare com-
paredin sections4.2 and4.3 usingcommonandcompara-
blesetsof parametersderivedfrom measureddatadescribed
briefly in Sec.4.1.

4.1 Measured traffic

Comparablesetsof parametersare neededto objectively
comparethe resultsobtainedwith differentmodels.As the
modelsrequiredifferenttypesof parameters,measurement
resultshave beenusedto derive the individual parameter
values. In accordancewith the idea of dimensioningan
accesstrunk line, traffic traceshave beencollectedclose
to clients during an ADSL (asymmetricdigital subscriber
line) field trial in Münster, Germany, where100subscribers
have beenobservedfrom May to December1998[13, 14].
Measurementsweretakencyclically in groupsof around7
usersfor a weekeach.Eachsubscriberaccessedthe Inter-
net througha line with a configuredratelimit of 2.5Mbit/s
downstreamand384kbit/supstream.Theaccesstrunk line
( � 2 in Fig. 1) wasa 100Mbit/s line offering bandwidthin
abundance.ServersoutsideUniversityof Münster’scampus
networkcouldbereachedvia its 34Mbit/sconnectionto the
GermanResearchNetwork.Thedependenceof parameters
on accesslink speedsis discussedin [15].

Table 2. Parameters

Parameter Symbol Value

MeanRate Ï 10.5kbit/s

AccessLine Rate Ä ÅÐÆ 2.5Mbit/s

Activity Factor Ñ 0.0042

VarianceCoefficient Ò 4.4ÓÕÔ Ö�×
HurstParameter Ø 0.915

The parametersobserved for HTTP/TCP/IP/Ethernet
traffic in active client accesssessionsare summarizedin
Tab. 2. A client accesssessionhasbeendefinedasthe in-
terval in time in which a client computertransmitsor re-
ceives packetswith pausesof no more than 10 minutes.
Meanrate g , variancecoefficient l andHurstparametern
have beendeterminedfrom a variance-timeplot covering
the time scalesfrom 10msup to oneday. The region for
consistentl and n estimationwasbetweenaround50ms
and3min.

The measuredone secondaveragebit ratesduring ac-
tive HTTP client sessionsasdefinedabove have beenused
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for the rate convolution model from Sec.3.4. The G -fold
convolutionandtheevaluationof (20)have beenperformed
numericallyon themeasureddistributionusinglinearinter-
polationbetweenthedistribution values.

SimulationB requiresarateanddurationdistributionfor
ON phasesin order to allow the (possiblymore realistic)
investigationof fun factorsunderthe assumptionof a dis-
tributionof ratesavailablefrom theInternetsimilar to when
the measurementdatawererecorded.During a client ses-
sion,it is realisticto assumethatthedurationof a phaseof
constantrateis distributedapproximatelylike theduration
of a TCP connection.In the measureddata,this duration
hada meanof 57sanda coefficient of variationof 16. For
the simulation,a Paretodistribution truncated[16, 17] at
70000shasbeenused,which correspondsvery well to the
measureddata.The ratedistribution in the ON phaseshas
beenextractedfrom theactive client ratedistributionasthe
conditionaldistribution for ratesthataregreaterthanzero.
A bestfit wasobtainedusingatruncatedParetodistribution
with a minimum valueof 19kbit/s, Ù � 1.5 anda censor-
ing boundof 2.5Mbit/s,i.e. a concentrationof the remain-
ing tail probabilitymasson thediscretevalueof 2.5Mbit/s,
which is in goodcorrespondencewith themeasureddistri-
bution. The probability for the rateto be zerofor onesec-
ond during an active sessionwas0.8. This hasbeenused
to determinethemeanof a negativeexponentialOFFphase
duration(228sec).

4.2 QoSindicator results

In Fig. 2, analysisandsimulationresultsare depictedfor
32 and800sourceswith parametersasdescribedabove. In
orderto plot it togetherwith lossratio results,thefun factor
hasbeenreplacedby �Ú\ � in theplots.The resultsin the
graphare:
 I " &%*�* from simulationA, given with 95% confidence

intervals.
 I " &%*�* accordingto theEngsetanalysis(3).
 �¬\ � from simulationB with ON/OFF sourcesand��D�E =2.5Mbit/s.
 ��\ � from theM/G/ � -PSanalysis(16).
 ��\ � from approximation(17)using I " &�*�* from (3).

Additionalsimulationsagreewith theanalysisresultthat
theON phasedistributionhasno influenceon thelossratio
or meanfun factor resultsfor the bufferlessor processor
sharingmodelsevenin thelimited sourcescase.

In theparameterrangechosenhere,the resultsfor IU" &%*�*
and �Û\ � arealmostindistinguishableandvary by about
10–20%in termsof theratenecessaryto givethesamelevel
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Figure 2. Transformed Fun Factor ÔNÜ�Ý and loss proba-
bility for (a) 32 sources and (b) 800 sources. For abbre-
viations and parameters see text in Sec. 4.3.

of QoS. This property is found as long as the difference
betweentime andper-connectionaveragesis negligible. In
simpleON/OFFcaseswhereall sourceshavethesamepeak
rate,theequivalenceof I " &%*�* and ��\ � canalsobeshown
analytically.

The picturechangeswhenthe real ratesavailable from
the Internetare includedin the evaluation.As mentioned
before,in orderto work with suchvalues,theseratesmust
bemeasuredfrequentlyin orderto keeptrackwith theevo-
lution of the Internet.For the ratedistribution documented
in Sec.4.1,Fig. 3 givesthedependenceof I " &%*�* according
to (20) and �²\ � asobtainedfrom simulationB with ON
ratesrandomlychosenfrom theratedistribution.

With thisrealratedistribution,theachievablefun factors
aremuchhigherthanwould be expectedfrom lossratedi-
mensioning,even if a target �²\ � hadbeenusedfor I " &�*�* .
Thisdifferenceis dueto thefactthatsourceswith anachiev-
able rate �-DjE lower than the currentfair shareproducea
contribution � � � andonly thosewith higherachievable
ratesaresloweddown by theaccesstrunk.However, it can-
not bestressedtoo oftenthatin orderto profit from thisad-
ditionalgain,anoperatormustkeeptrackof theevolutionof
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Figure 3. Transformed Fun Factor ÔNÜ�Ý and loss proba-
bility for (a) 32 sources and (b) 800 sources with a rate
distribution as given in Sec. 4.1.

bit ratesavailablefrom the Internetandre-dimensiontheir
accesstrunk linesaccordingly.

4.3 Dimensioningresults

Fig. 4 depictsa summaryof the resultsfrom the analyti-
cal modelsfor a wider rangeof G . Thecomparisonis done
with respectto thepredictedrequiredlink capacityH � Z G�] to
serve G sourceswith a given QoSmeasure.The following
modelsandparametershave beenused:
 Therequiredaccumulatemeanrateof all sources,G _ g .
 IU" &%*�* � �-�Ð�	� in theEngsetmodel(3).
 I " &%*�* � �-����� and � � � in the FractionalBrownian

Motion model(9).
`�;�h��� ��� � �·¶ÞABA in theM/G/ � -PSanalysis(16).
 I " &%*�* � �-� �	� for rateconvolution (20).

The dimensioningresultsare in fairly good agreement
with eachother. TheFBM resultover-emphasizesthe long
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Figure 4. Comparison of dimensioning results. For ab-
breviations and parameters see text in Sec. 4.3.

rangedependenceand under-estimatesthe bandwidthre-
quiredto satisfyasmallnumberof accesslinks. Theresults
from (16) arenearlyindistinguishable from the Engsetre-
sultsif �;� ��\@�-� ��� is used.

5 Conclusions

In this paperthe “fun factor” � wasintroducedasa basic
measureof perceivedqualityof servicefor elastictraffic. As
theimpactof �à����� ��� ontheperceivedQoSis easyto see,
it is asimpletaskto definetargetvaluesfor � for residential
or businessnetworkaccess.Dif ferent existing modelsfor
dimensioningdatanetworkswere compared.The M/G/ � -
PSmodel from [1] wasgeneralizedto arbitrary link rates
anda new approachfor dimensioninglinks with a known
distributionof theavailableratefrom theInternet(ratecon-
volution) wasadded.A comparisonwith a consistentsetof
parametersderivedfrom recentmeasurementresultshelped
to seethe generalrelation betweenthe fun factor and the
packetlossprobabilityasa moreclassicalQoSmeasure.

If the distribution of ratesavailable from the Internetis
known, bandwidthcanbe saved dueto bettermultiplexing
of sourceswith lowerON rates.Thetimescaleusedfor the
ratedistribution shouldbe smallerthanthe durationof the
connectionsof interest.

In order to validateespeciallythe fluid simulationre-
sults,simulationsincludingfull TCPmodelsshouldbeper-
formed.A continuousstatemodelmight help deriving the
distribution or meanof � in the rate convolution context
analytically.

It shouldbeaneasytaskto defineameasurementmethod
for � basedon fluid rate sharing assumptions.Such a
methodcouldhelp Internetserviceproviders(ISPs)moni-
toring theiraccesstrunkstowardscustomersaswell astheir
interconnectionpoints towardsthe rest of the Internet.A
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future applicationcould alsobe to include � limits in ser-
vice level agreementsor offer ISPsto advertisetheir good
networkperformanceandoverdimensioningtowardstheir
subscribersasa differentiationfeature.
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