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Abstract

On the basis of recent long-term traffic
tracessometraffic characteristicsf Internet
applicationsare presentedand interpreted.
The symmetryand asymmetryoccurringin
connectiondor Web accessge-mail andfile
transfertraffic is discusse@ndexplainedby
TCP (the Internettransportlayer protocol)
characteristicsThe paperconcludesby in-
troducinga“fun factor” asameasurdor per
ceived quality of serviceand by discussing
its quantificatiorandapplicationfor network
dimensioningpurposes.

Index terms: InternetTraffic; Application
CharacteristicsAccessNetwork; Asymme-
try; Dimensioning; Bit Rate Distribution;
ElasticTraffic; FunFactor

1 Intr oduction

Capacity planning is an important part of

networkengineeringln particular it is im-

portantto matchthe capacityof the trunk

partof a networkwith thetraffic offeredon

the accesdines. Offering too much band-
width on a commontrunk is uneconomical
whereastoo little bandwidth compromises
network performanceas perceved by the

users.

This paper concentrateson the traffic re-

quirements of elastic traffic as caused
by WWW access(HTTP), e-mail trans-

fer (SMTR POP) and file transfer (FTP).

Combiningresultsof differentrecentclient

sidemeasurementallows distinguishingoe-
tween user and application behaiour and
requirements.Previously known measure-
mentsfocuson backboneor sener sidetraf-
fic. In contrastto these,our measurement
pointswerechoserto be closeenougho the
subscribersn orderto capturethe complete
networktraffic of eachuser

As quality of service(QoS)for elastictraf-

fic is mainly determinedby the bit rate that
can be sustainedduring a TCP connection,
onefocusof this paperis the distribution of

meanTCP connectionbit ratesasobsenred

underdifferentcircumstancesA secondfo-

cusis onthesymmetryof datavolumesor bit

rateswithin a connectioraswell asbetween
different connectionshighlighting casesof

symmetryand asymmetryin accesstraffic

streams.

The tracesthat are the basisfor the numetr
ical evaluationsin this paperare described
in sec.2. Shortandlong-termbit rate dis-
tributions are presentedn sec. 3 for dif-
ferentapplicationsandthe relationbetween
the amountof traffic sentinto the corenet-
work to the amountof traffic receved from
the core network is investigatedin sec. 4
for HTTR, e-mailandFTPtraffic. Finally, in
sec.5 thedimensioningof accessnultiplex-
ersandconcentratorfor elastictraffic is dis-
cussedandan appropriateguality of service
parameters suggested.



2 Measurement

The resultsgiven in the following sections
have beenobtainedfrom two differentmea-
surements,which will be referred to as
“trace A’ and “trace B”. Both traceswere
collectedat local Ethernetsegmentswhere
all the traffic to andfrom individual users’
computersouldbeobsered.

TraceA wascollectedduring sevenmonths,
when 100 students’ PCs were connected
to their university’s backbonenetwork in
Munster Germary, via ADSL lines. The
lines were configuredto 2.5Mbit/s down-
streamand 384kbit/supstreanbit rates.Us-
age of the Internetaccessservicewas free
of chage and there was no dial-up pro-
cedure,i.e. computerscould have an “al-
ways on” mode connectionto the Internet.
In total, during the six monthsof monitor
ing, 14 million IP packetheadersbelong-
ingto HTTPwerecollected coveringaround
480,000HTTP/TCPconnections.

Trace B was collected during five weeks
when all traffic at a local Internet Service
Provider (ISP) “B Urgernetz Finfseenland”
closeto Munich, Germary, was monitored
using the samet cpdunp software[l] as
with trace A. Around 300 mostly residen-
tial subscribershared0dial-uplinesreach-
ing from low-speednodemdo doublelSDN
lines at 128kbit/s plus compressionApart
from chages for the local telephonecall
neededto connectto the ISP, subscribers
only paid a yearly flat rate.Here,for HTTP
traffic alone 43 million IP packetheaders
were collected,covering around1.6 million
HTTP/TCPconnections.

In the following, the terms“traffic volume”
and“bit rate” are determinedon the packet
level including the overheadof Ethernet
frames.Instantaneoubit ratesare averaged
over shorttime intervals whereaghe traffic
volumeandmeanbit rateof a“flow” arede-
terminedfrom thetotal packettraffic carried

in theflow andits duration.
Thenumberandcharacteristiparametersf
HTTPflows detectedn thetwo tracesn dif-
ferent flow classesare summarizedin Ta-
ble 1. The conceptof a flow is usedin the
Internetto denotea numberof IP packets
traversing the connectionlessore network
betweenthe same source and destination.
Thereareseveralwaysof definingaflow [2,
3]. For athoroughdiscussiorof flowsin con-
junction with Web traffic, see[4]. We use
the notion of portto port (P2P),hostto host
(H2H) andtotal client traffic (CL) flows. A
P2Pflow comprisesall traffic thatis trans-
mitted betweenthe sametwo hosts using
the sameprotocol and the sametwo ports
on thesehosts.The beginning andend of a
P2Pflow aredenotedby thefirst SYN (TCP
synchr oni ze) andthelastFIN (TCPf i -
nal ) packet.Defined in this way, a P2P
flow is equivalentto a TCP connection.A
hostto host (H2H) flow comprisesall traf-
fic betweenthe sametwo IP addresses,p
to aninter-packetinterval of 10 minutes,af-
ter which theflow is declaredo have ended
with the last packetseen.A H2H flow can
consistof the packetsof one or more TCP
connectionsA CL flow comprisesall traf-
fic for aselectedapplication(WWW, FTPor
e-mail)thatasingleclient consume®r pro-
duces.As with the H2H flows, the end of a
total client traffic flow is determinedby a 10
minutetimeout.

A comparisorof theP2RH2H andCL char
acteristicsrevealsthat the meanbit rate of
a flow could hardly be increasedy clients
having parallelTCP connectiongo thesame
sener but thatparallelconnectiongo differ-
ent senersresultedin an increaseof mean
bit ratesby a factorof two, ascanbe seernby
comparingthe CL meanbit rateswith H2H
or P2Pmeanbit rates.

Besideghefairly similarvaluesfor meanbit
rates,thereis a big differencebetweenthe
meanflow durationgneasureth bothtraces.



Table 1: HTTP flowsin tracesA and B: numberof flows,meanand coeficient of variation of
flow duration and meandownsteambit rate

flow type trace A B
#flows 480794 1576151

P2P meandurationin s 57 19.5
¢y of duration 15.7 4.2

meandownstreanbit ratein kbit/s 4.6 3.9

#flows 43537 95401

H2H meandurationin s 471 303
cy of duration 4.9 2.3

meandownstreanbit ratein kbit/s 5.0 4.1

#flows 2260 9253

CL meandurationin s 4860 1350
¢y of duration 2.0 1.5

meandownstreanbit ratein kbit/s 10.5 8.8

This is partly due to the fact that trace A
wasrecordedn aflat-rateervironmentwith-
out ary usagechageswhereaghe usersin
trace B hadto pay for the accessvia tele-
phondines,whichreducedhetotalusageas
well asthe meanusagedurationpersession.
In addition to the meanflow durationsof
Tah 1, Fig. 1 givesthe complementandis-
tribution function (cdf) of flow durations,
explaininganotherpartof the differencebe-
tweenmeanP2Pflow durationsof the two
traces:A fit of a Paretodistribution to the
P2Pflow durationcdf Cpyp(t) from traceA
in Fig. 1 revealsthatCp,p(t) ~ t~ for over
threedecadesith o ~ 0.95. At this value
of «, the expectationand varianceof the
Paretodistribution, a so-calledheavy-tailed
distribution,arebothinfinite if it is continued
until ¢ — oo. Therefore,for arny measure-
ment of finite duration,the measurednean
andvariancegrow with themeasuremerdu-
ration. It is this heary-tailed distribution of
burstdurationghatcauseshelong-rangele-
pendencandfractalpatternoobseredin In-

A cdf givesthe probability Cr(t) = P{Tr > t}
for theflow lifetime T to exceeda givendurationt.

ternettraffic [5].
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Figure 1. Complementarylistribution func-
tion of flowdurationsasmeasuedin traceA.

The distribution of H2H flow durationsin
Fig. 1 still exhibits a power tail between
around300 and 30000s, with an exponent
a = 1.13, indicatinga finite expectationbut
still aninfinite variancef thedistributiontail
is continueduntil infinity. Finally, in the cdf
of total client HTTP sessiondurations,this
powertail is notvisible ary more,but dueto
the smallnumberof CL flows obsered, the
statisticalsignificancein the corresponding
cdftail regionis low, sothatneitherpresence



nor absencef a power tail in CL flows can
beproved.

3 Bit Rate Distrib ution of Elastic Traffic
Flows

In apacketbasedhetwork,theinstantaneous
bit rate measurecdht one location can only
take two discretevalues:eitherit is equal
to theline bit rate(ongoingpackettransmis-
sion) or it is zero. Therefore,all meaning-
ful bit rate figuresmust be averagesover a
certaintime interval. A shortaveragingtime
interval leadsto a good time resolutionbut
alsoto a coarsegranularityof bit rates.On
theotherhand,alongaveraginginterval pro-
ducesfine granularitybit ratesat the costof
areducedimeresolution.

The graphin Fig.2 gives the complemen-
tary distribution function of 100ms aver-
age downstream bit rates measuredper
TCP connectionfor the application proto-
cols HTTPR, POP3 (e-mail reception) and
FTR The downstreamaccessline rate of
2.5Mbit/sis reachedn asmallfractionof the
time intervals whereaghereis also a fairly
high probability of the connectiorto beidle
duringa 100msinterval.
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Figure 2: P2Pflow (TCPconnection)pit rate
distribution of HTTP FTP andE-Mail traffic

in 100msintervalsfromtraceA.

This idle probability is increasedlepending

ontheobsenedservicewhenthetotal client
sessiortraffic is consideredn Fig. 3. Here
alsothe effect of parallelconnectionss vis-
ible by a slight increasen the probabilities
for high bit rates.
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Figure 3: Total client sessiorbit rate distri-
bution for HTTP FTP and E-Mail traffic in
100msntervalsfromtraceA.

In order to view the relation betweenup-

streamand downstreambit ratesduring an

HTTP/TCPconnection(P2Pflow), themean
upstreamnbit ratehasbeenplottedversusthe

meandownstreambit rate for eachconnec-
tion in Fig.4. A lighter gray indicatesthe

accumulationof more points on the same
spot. Although the bit ratesthemseles are
more variable, the ratio betweenupstream
anddownstreanratesis limited to valuesbe-

tweenaround3:1 and 1:30. The samechar

acteristicshave beenobtainedwith different
applicationsand different accessbit rates,
e.g. from traceB or in the casesanalyzed
in [6], exceptthatfor loweraccesdine rates,
theachievablemeanbit ratesof aconnection
arelower, which limits the extensionof the

obsered combinationsat the top right cor-

nerin Fig. 4. This effect of limited asymme-
try andits causesare investigatedurtherin

thefollowing section.
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Figure 4: Bit rate symmetryof HTTPtraffic

4 Traffic Asymmetry

4.1 HTTP Traffic

Fig.5 gives the complementarybit rate
asymmetrydistribution for HTTP traffic on

the differentflow levels. This distribution is

definedasthe probabilityfor theratio of up-

streanto downstreanmeanbit rateof aflow

to exceeda givenvalue.Note thatasthe du-

ration of a flow mustobviously bethe same
for theupstreamanddownstreandirections,
theratioof upstreanmo downstreammearbit

ratesis equialentto theratio of upstreanto

downstreandatavolumeof a flow.
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Figure 5: Distribution of upsteamto down-
stream bit rate (or volume) ratios in
HTTP/TCPflows.

Fig.5 indicatesthat there is a significant
fraction of HTTP flows on eachflow level

wherethe datavolumetransmittedupstream
is largerthanthe datavolumerecevedfrom

the network. If the total HTTP client traffic

is consideredthis fraction amountsto 30%

of all Websessionsln addition,the form of

thecurvesindicateghatthedistributionscan
bedescribedy lognormaldistribution func-

tions(notethelog-lin plot).

In orderto find out the reasonbehindthis

ratio distribution andthe high percentag®f

symmetricor even upstream-orientettans-
missions, the ratio of mean bit rates in

eachconnectiorhasbeenplottedagainstthe

downstreamvolume receved from the net-

work in the connectionTheresultinggraph
in Fig. 6 reveals that connectionswith a

smalldownloadvolumearefairly symmetri-
cal whereaghe higherasymmetryratios of

1:30-1:50can only be reachedin connec-
tionsin which a large volume of datais re-

trievedfrom asener.
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Figure 6: Correlation of upsteamto down-
streambit rate (or volume)ratiosanddown-
streamvolumein HTTP/TCPconnections.

Denotingthe upstreamvolumein a connec-
tion by v,, the downstreamvolume by v,
and assumingy acknavledgementger re-
ceived downstreamdatapacketwith values
of n between0.5 and 1, the volume ratio
can be derived from the basicHTTP/TCP
messagasequencealepictedin Fig. 7 for the
caseof non-persistentonnectionsn which



only one GET requestcan be sened per
HTTP/TCPconnection.
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Figure 7: Basic HTTP/TCP messagese-
qguence

As the packetsizesmeasuredn the traces
include the Ethernetheadersthe sizes of
the connectionmanagementand acknavl-
edgemenpacketsare60byteseach A mean
GET requestpackethas a size of around
400bytesand the downstreamdatapackets
have amaximumsizeof 1500bytesin larger
downloads. Thus, the ratio of upstreamto
downstreamvolumesin a download is ap-
proximatedoy

v _ 5808 605

o~ o T 15008
The correspondingralueshave beenadded
asadashedine in Fig. 6. Connectionsvith a
smallermaximumtransmissiorunit (MTU)
of 512bytese.g.canstill bedescribedy us-
ing an adaptedeffective  value. This gen-
eral behaiour of any TCP baseduploador

downloadserviceshasbeenconfirmedwith
FTP and e-mail data(dependingon the di-
rectionof transmission).

4.2 E-Mail and FTP Traffic

The complementarybit rate ratio distribu-
tions for P2Pand H2H e-mail traffic flows
in Fig. 8 have beensplit into two partseach:
Residentialsusually transmit outgoing e-
mails via the simple mail transferprotocol
(SMTP) over TCP whereasreceved mes-
sagesareretrieved from the mail sener via
the post office protocol (POP3)over TCP

Thisfactis reflectedn theobsenrationof up-
streamto downstreanratiosbeingnearlyal-

ways greaterthanonefor the SMTP traffic

andlessthanonefor the POP3flows. Note
that there is a concentrationof probability
massatbit rateratiosbetweerD.64and0.74,
which is dueto the large fraction of POP3
connectiongthat are only usedto checkif

thereare newv mails available on the sener
anddo notretrieve ary data.
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Figure 8: Distribution of upsteamto down-
streambit rateratio for e-mailtraffic.

In the FTP casedepictedin Fig.9, around
5% of all P2P and 14% of all H2H flows
transmit more data into the network than
they receve.

Note that the file transfer protocol (FTP)
usesseparatecontrol and dataconnections.
This leadsto a split of the typical TCP
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Figure 9: Distribution of upsteamto down-
streambit rateratio for FTP traffic.

graphas obsenred in Fig.6 into threedis-

tinct branchesascanbeseenn Fig. 10. The
lower branchis dueto file downloadswith

the main part of the traffic in downstream
direction. The upper branchis due to the
(fewer) file uploads.It differsin form from

the lower branchbecauset would have to

be plottedversusthe upsteaminsteadof the
downstreamdatavolumein orderto obtain
the sameform. More resultsnot given here
have shavn that also the size distribution
of uploadeditems is highly similar to that
of downloadeditems — only the frequeng

of uploadsand downloadsdiffer. The third

branchin the middle of Fig. 10is dueto the
control connectionsvhich producemoreor

lesssymmetrictraffic.

4.3 AccessSessionTraffic

Apartfrom theperconnectiorsymmetryob-
sened above, the decisionasto which ac-
cesstechnologyto offer to customerss also
determinedby the overall traffic symmetry
thatis expected.Theasymmetrydistribution
of the total upstreamand downstreamtraf-
fic peraccessessiorasmeasuredn traceB
is depictedin Fig. 11. As mostof the total
accesdraffic is HTTP or e-mail traffic, we
expectto seea mixture of the HTTP asym-
metry distributions (Fig. 5) and both distri-
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Figure 10: Correlation of upsteamto down-
streambit rate (or volume)ratiosanddown-
streamvolumein FTP/TCPconnections.

butionsfor e-mailtraffic (Fig. 8). Theplotin

Fig. 11 containsseparatevaluationgor nor-

malmodemand(singleor doubleB channel)
ISDN accesssessionswhich do not shav

significantdifferencesLike in theHTTP and
e-mailflow asymmetnydistributions,thereis

a significant proportion of 15-20% of ac-
cesssession#n whichthereis moretotal up-
streanthandownstreantraffic.

Complementary Distribution Function

0 1 Illlli

0.01 0.1 1 10
Upstream/Downstream Rate Ratio

Figure 11: Upstream/downs&amratio dis-
tribution of total accesdraffic.

The decisionasto which accesgechnology
to offer to customeraill alsobeinfluenced
by the overall traffic symmetrythat is ex-
pected.In additionto the standardcasesof
telavorking businesscustomer®r sener-at-
homescenariosalsoresidentialsubscribers



shaving a high volume of upstreame-mail
or FTP transmission®r a large fraction of
shortHTTP downloadswill bein favour of
a moresymmetricalaccessystemwhereas
subscribersvith anemphasi®n largedown-
loadsor audio/videostreamingapplications
will preferto have anasymmetricaccessine
which focuseson downstreamine speed.

5 QoSRequirementsof Elastic Traffic

Whereasmostreal-time servicesproducing
streamtraffic needa certainguaranteednin-
imum bandwidthin orderto beusableat alll,
applications producing elastic traffic (like
WWW browsing,e-mail,file transferor net-
work news) canbe usedstartingwith avery
low minimum bandwidth.However, asmost
of todayss traffic in datanetworksis elastic
traffic, InternetServiceProviders(ISPs)can
usegoodelastictraffic performanceof their
networksasa meansof adwertising.If acor-
respondingQoS measureas definedin the
following, is standardisedndavailableasa
referenceor for comparinglSPs,it may be
readilyacceptedy subscribers.

The Internets transmissiorcontrol protocol
(TCP) provides the necessanyflow control
functionsto optimally utilise the available
bandwidthavailablein thenetwork.Teletraf-
fic modelsbasedon the ProcessoiSharing
discipline, like the M/G/R-PS model, take
this behaiour into accountandallow to use
a relative delay factor fr to give the ratio
of transmissiortime neededor afile to the
ideal transmissiortime that would have oc-
curred e.g. if the full link rate of the ac-
cessline could have been utilized by the
data transfer[7, 8]. This model is insen-
sitive to the burst size distribution, which
makesit even more appropriatealsofor the
heavy tailed burst size distributions found
in datatraffic. In contrast,classical mod-
els for multiplexers that determinethe de-
lay and/orpacketossprobabilitywithoutre-

gardingtheeffectof flow controlwill greatly
over-estimatethe amountof bandwidthre-
quired[9, 10].

In an attemptto define an understandable
measurefor user perceved quality of ser
vice, a “fun factor” ¢ is definedastheratio
of the transmissiortime for a givenamount
of dataunderideal conditionsto the trans-
missiontime actuallyneeded:

tideal

7 tobserued

This fun factor is for a single connection
equalto 1/ fr but hastheadwantageof giving

resultspositively correlatedwith aperceved
quality: A funfactorof zerodescribescom-
pletely unusableservicewhereasthe upper
boundy = 1 denoteshebestachievableser

vice. Using this measurefor QoS, realistic
target valuesfor ¢ canbe estimatedin the
pastresidentiakubscriberfiave boughtnew

Internetaccessequipmentwhenthey could
increasethe bandwidthby a factor of 2-3.
Assumingthat the old equipmentwas op-

eratedat the limits of its throughputcapac-
ity (¢ ~ 1), the samebit ratewould corre-
spondto afun factorof o =0.3—-0.5with the
new equipment.A noticeableimprovement
canthereforebefelt if o >0.7-0.8For busi-

nesscustomerspon the other hand, the tar

getvaluesshouldbe muchhigher, e.g.95 or

even 99%, dependingon the degree of ser

vice requestedror high-qualitybusinessac-
cesspnecouldalsoimaginedetermininghe
distribution of » anddemandinghatthera-

tio of connectionsvith o < 90% belessthan
a certainpercentageluringbusy hours.

For a consenrative estimateof the required
bandwidthof the commontrunk line in an
accessnetwork, an ON/OFF sourcemodel
with the ON bit rate equalto the individual
accesdine ratecanbeusedasareferencdor

theideal situation.Anotherapproachto ob-
tain morerealistic estimatesof the required
trunk line capacityis to convolve the mea-



suredbit ratedistributionsasgivenin Fig. 3
for thenumberof simultaneoushactive sub-
scribersandto determinghefun factorfrom
the resultingdistribution of the ideal aggre-
gatedbit rate and its reductionby limiting
the sumof all bit ratesto a giventrunk line
rate. However, this approachrequiresthat
up-to-datebit ratedistributionmeasurements
suchasthosedisplayedn Fig. 3 beavailable
from a situationin which the Internetaccess
wassufficiently overdimensioned.

6 Conclusions

Using recent long-term client side traffic
tracesfrom a high-speed2.5Mbit/sADSL)
Internet accessnetwork and from a mo-
dem/ISDNaccessool, several characteris-
tics of Internetclient traffic were analyzed.
As expected flows on differentaggreation
levelsshow significantidle phasesndshort-
termmeanbit ratescanreachvaluesaround
the accessline rate. Investigationsof the
asymmetryin bit ratesand datavolumesof
differentflows revealedthat althoughmost
singleconnectionfiave adirectionof prefer
ence the overall traffic is a mix of upstream
and downstreamorienteddatatransfers.In
addition,therearea lot of TCP connections
usedfor HTTPtransporiwvhereupstreanand
downstreamdata volumesare aboutequal,
which is dueto the symmetryof connection
establishmentnd connectionreleasepro-
ceduresas well as the fairly big sizes of
the packetscontainingthe HTTP GET re-
guestsOn the otherhand,connectionsised
for transferringlarge volumesof datacan-
not exceed an asymmetryratio of around
1:30-1:50dueto the size andfrequeng of
the TCP acknavledgementdransmittedin
the reversedirection. The measuremente-
sults also revealedthat the overall symme-
try of the traffic is suchthatin 15-20%of
all accessessionse.g.modemor ISDN di-
alupsessionsmoretraffic is transmittedup-

streamthan downstream.Taking the path
from measurementesultsto dimensioning,
the “fun factor” wasintroducedasan easy-
to-quantify measureof perceved quality of

servicefor elastictraffic andhintsweregiven
on how dimensioningcan be achieved for

elastic traffic assumingideal conditionsor

even taking the bit ratesavailable from the
realInternetinto account.
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