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Abstract

On the basis of recent long-term traffic
traces,sometraffic characteristicsof Internet
applicationsare presentedand interpreted.
The symmetryandasymmetryoccurringin
connectionsfor Web access,e-mail andfile
transfertraffic is discussedandexplainedby
TCP (the Internet transportlayer protocol)
characteristics.The paperconcludesby in-
troducinga“fun factor”asameasurefor per-
ceived quality of serviceandby discussing
its quantificationandapplicationfor network
dimensioningpurposes.
Index terms: InternetTraffic; Application
Characteristics;AccessNetwork; Asymme-
try; Dimensioning; Bit Rate Distribution;
ElasticTraffic; FunFactor

1 Intr oduction

Capacity planning is an important part of
networkengineering.In particular, it is im-
portant to match the capacityof the trunk
part of a networkwith the traffic offeredon
the accesslines. Offering too much band-
width on a commontrunk is uneconomical
whereastoo little bandwidthcompromises
network performanceas perceived by the
users.
This paper concentrateson the traffic re-
quirements of elastic traffic as caused
by WWW access(HTTP), e-mail trans-
fer (SMTP, POP) and file transfer (FTP).
Combiningresultsof different recentclient

sidemeasurementsallowsdistinguishingbe-
tween user and application behaviour and
requirements.Previously known measure-
mentsfocuson backboneor server sidetraf-
fic. In contrastto these,our measurement
pointswerechosento becloseenoughto the
subscribersin orderto capturethecomplete
networktraffic of eachuser.

As quality of service(QoS)for elastictraf-
fic is mainly determinedby the bit ratethat
canbe sustainedduring a TCP connection,
onefocusof this paperis thedistribution of
meanTCP connectionbit ratesasobserved
underdifferentcircumstances.A secondfo-
cusis onthesymmetryof datavolumesorbit
rateswithin a connectionaswell asbetween
differentconnections,highlighting casesof
symmetryand asymmetryin accesstraffic
streams.

The tracesthat arethe basisfor the numer-
ical evaluationsin this paperare described
in sec.2. Short and long-termbit rate dis-
tributions are presentedin sec. 3 for dif-
ferentapplicationsandthe relationbetween
the amountof traffic sentinto the corenet-
work to theamountof traffic received from
the core network is investigatedin sec. 4
for HTTP, e-mailandFTPtraffic. Finally, in
sec.5 thedimensioningof accessmultiplex-
ersandconcentratorsfor elastictraffic is dis-
cussedandanappropriatequality of service
parameteris suggested.



2 Measurement

The resultsgiven in the following sections
have beenobtainedfrom two differentmea-
surements,which will be referred to as
“trace A” and “trace B”. Both traceswere
collectedat local Ethernetsegmentswhere
all the traffic to and from individual users’
computerscouldbeobserved.
TraceA wascollectedduringsevenmonths,
when 100 students’ PCs were connected
to their university’s backbonenetwork in
Münster, Germany, via ADSL lines. The
lines were configuredto 2.5Mbit/s down-
streamand384kbit/supstreambit rates.Us-
ageof the Internetaccessservicewas free
of charge and there was no dial-up pro-
cedure,i.e. computerscould have an “al-
ways on” modeconnectionto the Internet.
In total, during the six monthsof monitor-
ing, 14 million IP packetheadersbelong-
ing to HTTPwerecollected,coveringaround
480,000HTTP/TCPconnections.
Trace B was collected during five weeks
when all traffic at a local Internet Service
Provider (ISP) “BürgernetzFünfseenland”
close to Munich, Germany, was monitored
using the sametcpdump software[1] as
with trace A. Around 300 mostly residen-
tial subscribersshared30dial-uplinesreach-
ing from low-speedmodemsto doubleISDN
lines at 128kbit/s plus compression.Apart
from charges for the local telephonecall
neededto connect to the ISP, subscribers
only paida yearly flat rate.Here,for HTTP
traffic alone 43 million IP packetheaders
werecollected,covering around1.6 million
HTTP/TCPconnections.
In the following, the terms“traffic volume”
and“bit rate” aredeterminedon the packet
level including the overhead of Ethernet
frames.Instantaneousbit ratesareaveraged
over short time intervals whereasthe traffic
volumeandmeanbit rateof a “flow” arede-
terminedfrom thetotal packettraffic carried

in theflow andits duration.
Thenumberandcharacteristicparametersof
HTTPflowsdetectedin thetwo tracesin dif-
ferent flow classesare summarizedin Ta-
ble 1. The conceptof a flow is usedin the
Internet to denotea numberof IP packets
traversing the connectionlesscore network
betweenthe samesourceand destination.
Thereareseveralwaysof defininga flow [2,
3]. Forathoroughdiscussionof flowsin con-
junction with Web traffic, see[4]. We use
thenotionof port to port (P2P),hostto host
(H2H) andtotal client traffic (CL) flows. A
P2Pflow comprisesall traffic that is trans-
mitted betweenthe sametwo hosts using
the sameprotocol and the sametwo ports
on thesehosts.The beginning andendof a
P2Pflow aredenotedby thefirst SYN (TCP
synchronize) andthelastFIN (TCPfi-
nal) packet.Defined in this way, a P2P
flow is equivalent to a TCP connection.A
host to host (H2H) flow comprisesall traf-
fic betweenthe sametwo IP addresses,up
to aninter-packetinterval of 10 minutes,af-
ter which theflow is declaredto have ended
with the last packetseen.A H2H flow can
consistof the packetsof one or moreTCP
connections.A CL flow comprisesall traf-
fic for aselectedapplication(WWW, FTPor
e-mail) thata singleclient consumesor pro-
duces.As with the H2H flows, theendof a
total client traffic flow is determinedby a 10
minutetimeout.
A comparisonof theP2P, H2H andCL char-
acteristicsreveals that the meanbit rate of
a flow could hardly be increasedby clients
having parallelTCPconnectionsto thesame
server but thatparallelconnectionsto differ-
ent servers resultedin an increaseof mean
bit ratesby a factorof two,ascanbeseenby
comparingthe CL meanbit rateswith H2H
or P2Pmeanbit rates.
Besidesthefairly similarvaluesfor meanbit
rates,there is a big differencebetweenthe
meanflow durationsmeasuredin bothtraces.



Table1: HTTPflowsin tracesA andB: numberof flows,meanandcoefficientof variation of
flowduration andmeandownstreambit rate.

flow type trace A B

#flows 480794 1576151
P2P meandurationin s 57 19.5��� of duration 15.7 4.2

meandownstreambit ratein kbit/s 4.6 3.9

#flows 43537 95401
H2H meandurationin s 471 303� � of duration 4.9 2.3

meandownstreambit ratein kbit/s 5.0 4.1

#flows 2260 9253
CL meandurationin s 4860 1350��� of duration 2.0 1.5

meandownstreambit ratein kbit/s 10.5 8.8

This is partly due to the fact that trace A
wasrecordedin aflat-rateenvironmentwith-
out any usagechargeswhereasthe usersin
traceB had to pay for the accessvia tele-
phonelines,whichreducedthetotalusageas
well asthemeanusagedurationpersession.
In addition to the meanflow durationsof
Tab. 1, Fig. 1 givesthe complementarydis-
tribution function (cdf) of flow durations1,
explaininganotherpartof thedifferencebe-
tweenmeanP2Pflow durationsof the two
traces:A fit of a Paretodistribution to the
P2Pflow durationcdf

�������
	���
from traceA

in Fig. 1 revealsthat
�������
	�����������

for over
threedecadeswith ����������� . At this value
of � , the expectationand varianceof the
Paretodistribution, a so-calledheavy-tailed
distribution,arebothinfinite if it iscontinued
until

��� �
. Therefore,for any measure-

mentof finite duration,the measuredmean
andvariancegrow with themeasurementdu-
ration. It is this heavy-tailed distribution of
burstdurationsthatcausesthelong-rangede-
pendenceandfractalpatternsobservedin In-

1A cdf givestheprobability  "!$#&%('*),+"-/.0!212%43
for theflow lifetime .0! to exceeda givenduration% .

ternettraffic [5].
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Figure 1: Complementarydistribution func-
tionofflowdurationsasmeasuredin traceA.

The distribution of H2H flow durationsin
Fig. 1 still exhibits a power tail between
around300 and 30000s,with an exponent
�5�76��86:9 , indicatinga finite expectationbut
still aninfinite varianceif thedistributiontail
is continueduntil infinity. Finally, in thecdf
of total client HTTP sessiondurations,this
power tail is not visibleany more,but dueto
thesmallnumberof CL flows observed,the
statisticalsignificancein the corresponding
cdf tail regionis low, sothatneitherpresence



nor absenceof a power tail in CL flows can
beproved.

3 Bit RateDistrib ution of Elastic Traffic
Flows

In apacketbasednetwork,theinstantaneous
bit rate measuredat one location can only
take two discretevalues:either it is equal
to theline bit rate(ongoingpackettransmis-
sion) or it is zero. Therefore,all meaning-
ful bit rate figuresmust be averagesover a
certaintime interval. A shortaveragingtime
interval leadsto a goodtime resolutionbut
alsoto a coarsegranularityof bit rates.On
theotherhand,a longaveraginginterval pro-
ducesfine granularitybit ratesat thecostof
a reducedtime resolution.
The graph in Fig. 2 gives the complemen-
tary distribution function of 100ms aver-
age downstream bit rates measuredper
TCP connectionfor the applicationproto-
cols HTTP, POP3 (e-mail reception) and
FTP. The downstreamaccessline rate of
2.5Mbit/sis reachedin asmallfractionof the
time intervals whereasthereis alsoa fairly
high probabilityof theconnectionto beidle
duringa100msinterval.
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Figure2: P2Pflow(TCPconnection)bit rate
distributionof HTTP, FTPandE-Mail traffic
in 100msintervalsfromtraceA.

This idle probability is increaseddepending

on theobservedservicewhenthetotal client
sessiontraffic is consideredin Fig. 3. Here
alsotheeffect of parallelconnectionsis vis-
ible by a slight increasein the probabilities
for highbit rates.
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Figure 3: Total client sessionbit ratedistri-
bution for HTTP, FTP and E-Mail traffic in
100msintervalsfromtraceA.

In order to view the relation betweenup-
streamand downstreambit ratesduring an
HTTP/TCPconnection(P2Pflow), themean
upstreambit ratehasbeenplottedversusthe
meandownstreambit rate for eachconnec-
tion in Fig. 4. A lighter gray indicatesthe
accumulationof more points on the same
spot.Although the bit ratesthemselves are
more variable, the ratio betweenupstream
anddownstreamratesis limited to valuesbe-
tweenaround3:1 and1:30.The samechar-
acteristicshave beenobtainedwith different
applicationsand different accessbit rates,
e.g. from traceB or in the casesanalyzed
in [6], exceptthatfor loweraccessline rates,
theachievablemeanbit ratesof aconnection
arelower, which limits the extensionof the
observed combinationsat the top right cor-
nerin Fig. 4. Thiseffectof limited asymme-
try andits causesareinvestigatedfurther in
thefollowing section.
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Figure 4: Bit ratesymmetryof HTTPtraffic

4 Traffic Asymmetry

4.1 HTTP Traffic

Fig. 5 gives the complementarybit rate
asymmetrydistribution for HTTP traffic on
thedifferentflow levels.This distribution is
definedastheprobabilityfor theratioof up-
streamto downstreammeanbit rateof aflow
to exceeda givenvalue.Note thatasthedu-
rationof a flow mustobviously bethesame
for theupstreamanddownstreamdirections,
theratioof upstreamto downstreammeanbit
ratesis equivalentto theratio of upstreamto
downstreamdatavolumeof a flow.
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Figure 5: Distribution of upstreamto down-
stream bit rate (or volume) ratios in
HTTP/TCPflows.

Fig. 5 indicates that there is a significant
fraction of HTTP flows on eachflow level

wherethedatavolumetransmittedupstream
is largerthanthedatavolumereceivedfrom
the network.If the total HTTP client traffic
is considered,this fraction amountsto 30%
of all Websessions.In addition,theform of
thecurvesindicatesthatthedistributionscan
bedescribedby lognormaldistribution func-
tions(notethelog-lin plot).
In order to find out the reasonbehind this
ratio distribution andthehigh percentageof
symmetricor even upstream-orientedtrans-
missions, the ratio of mean bit rates in
eachconnectionhasbeenplottedagainstthe
downstreamvolume received from the net-
work in theconnection.Theresultinggraph
in Fig. 6 reveals that connectionswith a
smalldownloadvolumearefairly symmetri-
cal whereasthe higherasymmetryratiosof
1:30–1:50can only be reachedin connec-
tions in which a large volumeof datais re-
trievedfrom a server.
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Figure 6: Correlation of upstreamto down-
streambit rate(or volume)ratiosanddown-
streamvolumein HTTP/TCPconnections.

Denotingtheupstreamvolumein a connec-
tion by <>= , the downstreamvolume by <0?
and assuming@ acknowledgementsper re-
ceived downstreamdatapacketwith values
of @ between0.5 and 1, the volume ratio
can be derived from the basic HTTP/TCP
messagesequencedepictedin Fig. 7 for the
caseof non-persistentconnectionsin which



only one GET requestcan be served per
HTTP/TCPconnection.

SYN

SYN+ACK

ACK

HTTP GET

HTTP response

Client Server

FIN+ACK

FIN+ACK

ACK

Connection
Set-up

Data
Transfer

Connection
Release

ACK

time t

. .
 .

Figure 7: Basic HTTP/TCP messagese-
quence.

As the packetsizesmeasuredin the traces
include the Ethernetheaders,the sizes of
the connectionmanagementand acknowl-
edgementpacketsare60byteseach.A mean
GET requestpacket has a size of around
400bytesand the downstreamdatapackets
haveamaximumsizeof 1500bytesin larger
downloads.Thus, the ratio of upstreamto
downstreamvolumesin a download is ap-
proximatedbyACB

A0D � ��E0�GFA0D HJILK
M �GF
6:�0���GF �

The correspondingvalueshave beenadded
asadashedline in Fig. 6.Connectionswith a
smallermaximumtransmissionunit (MTU)
of 512bytese.g.canstill bedescribedby us-
ing an adaptedeffective I value.This gen-
eral behaviour of any TCP baseduploador

downloadserviceshasbeenconfirmedwith
FTP ande-mail data(dependingon the di-
rectionof transmission).

4.2 E-Mail and FTP Traffic

The complementarybit rate ratio distribu-
tions for P2PandH2H e-mail traffic flows
in Fig. 8 have beensplit into two partseach:
Residentialsusually transmit outgoing e-
mails via the simple mail transferprotocol
(SMTP) over TCP whereasreceived mes-
sagesareretrieved from the mail server via
the post office protocol (POP3)over TCP.
Thisfact is reflectedin theobservationof up-
streamto downstreamratiosbeingnearlyal-
waysgreaterthanonefor the SMTP traffic
andlessthanonefor the POP3flows. Note
that there is a concentrationof probability
massatbit rateratiosbetween0.64and0.74,
which is due to the large fraction of POP3
connectionsthat are only usedto check if
therearenew mails available on the server
anddo not retrieveany data.
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Figure 8: Distribution of upstreamto down-
streambit rateratio for e-mailtraffic.

In the FTP casedepictedin Fig. 9, around
5% of all P2Pand 14% of all H2H flows
transmit more data into the network than
they receive.
Note that the file transfer protocol (FTP)
usesseparatecontrol anddataconnections.
This leads to a split of the typical TCP
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Figure 9: Distribution of upstreamto down-
streambit rateratio for FTP traffic.

graphas observed in Fig. 6 into threedis-
tinct branches,ascanbeseenin Fig. 10. The
lower branchis due to file downloadswith
the main part of the traffic in downstream
direction. The upper branch is due to the
(fewer) file uploads.It differs in form from
the lower branchbecauseit would have to
beplottedversustheupstreaminsteadof the
downstreamdatavolume in order to obtain
the sameform. More resultsnot given here
have shown that also the size distribution
of uploadeditems is highly similar to that
of downloadeditems – only the frequency
of uploadsanddownloadsdiffer. The third
branchin themiddleof Fig. 10 is dueto the
control connectionswhich producemoreor
lesssymmetrictraffic.

4.3 AccessSessionTraffic

Apart from theperconnectionsymmetryob-
served above, the decisionas to which ac-
cesstechnologyto offer to customersis also
determinedby the overall traffic symmetry
thatis expected.Theasymmetrydistribution
of the total upstreamand downstreamtraf-
fic peraccesssessionasmeasuredin traceB
is depictedin Fig. 11. As most of the total
accesstraffic is HTTP or e-mail traffic, we
expectto seea mixture of theHTTP asym-
metry distributions(Fig. 5) and both distri-
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Figure10: Correlationof upstreamto down-
streambit rate(or volume)ratiosanddown-
streamvolumein FTP/TCPconnections.

butionsfor e-mailtraffic (Fig. 8). Theplot in
Fig. 11containsseparateevaluationsfor nor-
malmodemand(singleor doubleB channel)
ISDN accesssessions,which do not show
significantdifferences.Like in theHTTPand
e-mailflow asymmetrydistributions,thereis
a significant proportion of 15–20% of ac-
cesssessionsin whichthereis moretotalup-
streamthandownstreamtraffic.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1 10

C
om

pl
em

en
ta

ry
 D

is
tr

ib
ut

io
n 

F
un

ct
io

n

Upstream/Downstream Rate Ratio

Analog
ISDN

Figure 11: Upstream/downstreamratio dis-
tribution of total accesstraffic.

The decisionasto which accesstechnology
to offer to customerswill alsobeinfluenced
by the overall traffic symmetrythat is ex-
pected.In addition to the standardcasesof
teleworkingbusinesscustomersor server-at-
homescenarios,alsoresidentialsubscribers



showing a high volume of upstreame-mail
or FTP transmissionsor a large fraction of
shortHTTP downloadswill be in favour of
a moresymmetricalaccesssystem,whereas
subscriberswith anemphasisonlargedown-
loadsor audio/videostreamingapplications
will preferto haveanasymmetricaccessline
which focusesondownstreamline speed.

5 QoSRequirementsof Elastic Traffic

Whereasmost real-timeservicesproducing
streamtraffic needacertainguaranteedmin-
imum bandwidthin orderto beusableat all,
applicationsproducing elastic traffic (like
WWW browsing,e-mail,file transferor net-
work news) canbeusedstartingwith a very
low minimumbandwidth.However, asmost
of today’s traffic in datanetworksis elastic
traffic, InternetServiceProviders(ISPs)can
usegoodelastictraffic performanceof their
networksasa meansof advertising.If a cor-
respondingQoSmeasure,as definedin the
following, is standardisedandavailableasa
referenceor for comparingISPs,it may be
readilyacceptedby subscribers.
The Internet’s transmissioncontrol protocol
(TCP) provides the necessaryflow control
functions to optimally utilise the available
bandwidthavailablein thenetwork.Teletraf-
fic modelsbasedon the ProcessorSharing
discipline, like the M/G/R-PS model, take
this behaviour into accountandallow to use
a relative delay factor O>P to give the ratio
of transmissiontime neededfor a file to the
ideal transmissiontime that would have oc-
curred e.g. if the full link rate of the ac-
cessline could have been utilized by the
data transfer [7, 8]. This model is insen-
sitive to the burst size distribution, which
makesit even moreappropriatealsofor the
heavy tailed burst size distributions found
in data traffic. In contrast,classicalmod-
els for multiplexers that determinethe de-
lay and/orpacketlossprobabilitywithoutre-

gardingtheeffectof flow controlwill greatly
over-estimatethe amountof bandwidthre-
quired[9, 10].
In an attempt to define an understandable
measurefor user perceived quality of ser-
vice, a “fun factor” Q is definedasthe ratio
of the transmissiontime for a givenamount
of dataunderideal conditionsto the trans-
missiontimeactuallyneeded:

QSR
�4T D4U�V/W�/X�Y[Z U[\�]/U^D

This fun factor is for a single connection
equalto 6>_`O>P but hastheadvantageof giving
resultspositively correlatedwith aperceived
quality:A fun factorof zerodescribesacom-
pletely unusableservicewhereasthe upper
boundQaRb6 denotesthebestachievableser-
vice. Using this measurefor QoS, realistic
target valuesfor Q canbe estimated:In the
past,residentialsubscribershaveboughtnew
Internetaccessequipmentwhen they could
increasethe bandwidthby a factor of 2–3.
Assumingthat the old equipmentwas op-
eratedat the limits of its throughputcapac-
ity ( Qc�d6 ), the samebit ratewould corre-
spondto a fun factorof QaR 0.3–0.5with the
new equipment.A noticeableimprovement
canthereforebefelt if QJe 0.7–0.8.For busi-
nesscustomers,on the other hand,the tar-
getvaluesshouldbemuchhigher, e.g.95 or
even 99%, dependingon the degreeof ser-
vice requested.For high-qualitybusinessac-
cess,onecouldalsoimaginedeterminingthe
distribution of Q anddemandingthat thera-
tio of connectionswith QJf��0�hg belessthan
a certainpercentageduringbusyhours.
For a conservative estimateof the required
bandwidthof the commontrunk line in an
accessnetwork, an ON/OFF sourcemodel
with the ON bit rateequalto the individual
accessline ratecanbeusedasareferencefor
the ideal situation.Anotherapproachto ob-
tain morerealisticestimatesof the required
trunk line capacityis to convolve the mea-



suredbit ratedistributionsasgivenin Fig. 3
for thenumberof simultaneouslyactivesub-
scribersandto determinethefun factorfrom
the resultingdistribution of the ideal aggre-
gatedbit rate and its reductionby limiting
thesumof all bit ratesto a given trunk line
rate. However, this approachrequiresthat
up-to-datebit ratedistributionmeasurements
suchasthosedisplayedin Fig. 3 beavailable
from a situationin which theInternetaccess
wassufficiently overdimensioned.

6 Conclusions

Using recent long-term client side traffic
tracesfrom a high-speed(2.5Mbit/sADSL)
Internet accessnetwork and from a mo-
dem/ISDNaccesspool, several characteris-
tics of Internetclient traffic wereanalyzed.
As expected,flows on differentaggregation
levelsshow significantidle phasesandshort-
termmeanbit ratescanreachvaluesaround
the accessline rate. Investigationsof the
asymmetryin bit ratesanddatavolumesof
differentflows revealedthat althoughmost
singleconnectionshaveadirectionof prefer-
ence,theoverall traffic is a mix of upstream
and downstreamorienteddata transfers.In
addition,therearea lot of TCPconnections
usedfor HTTPtransportwhereupstreamand
downstreamdata volumesare aboutequal,
which is dueto thesymmetryof connection
establishmentand connectionreleasepro-
ceduresas well as the fairly big sizes of
the packetscontainingthe HTTP GET re-
quests.On theotherhand,connectionsused
for transferringlarge volumesof datacan-
not exceed an asymmetryratio of around
1:30–1:50dueto the sizeandfrequency of
the TCP acknowledgementstransmittedin
the reversedirection.The measurementre-
sults also revealedthat the overall symme-
try of the traffic is suchthat in 15–20%of
all accesssessions,e.g.modemor ISDN di-
alupsessions,moretraffic is transmittedup-

streamthan downstream.Taking the path
from measurementresultsto dimensioning,
the “fun factor” wasintroducedasan easy-
to-quantifymeasureof perceived quality of
servicefor elastictraffic andhintsweregiven
on how dimensioningcan be achieved for
elastic traffic assumingideal conditionsor
even taking the bit ratesavailable from the
realInternetinto account.
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